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ABSTRACT 
 
The Department of Defense (DoD) is developing a 

Ballistic Missile Defense System (BMDS) based on a layered 

defense that employs complementary sensors, weapons and C2 

elements integrated by software into a system-of-systems to 

engage and destroy threat ballistic missiles through all 

phases of its flight.  Inherent to the ultimate success of 

the BMDS will be the timely execution of the kill chain 

process against threat ballistic missiles. 

In this thesis we will apply the Unified Software 

Development Process, utilizing the BMDS as a case study, to 

investigate a means to identify and validate timing 

behaviors and constraints of system-of-systems.  In 

particular, we will examine the information exchange needed 

for processors to share, collaborate, fuse, and distribute 

sensor information in a distributed sensor network and 

utilize modeling and simulation to provide insight into the 

timing aspects of interactions among subsystems comprising 

a system-of-system.  The case study will involve deriving 

and documenting system and software requirements, 

developing a test-ready model for representing the timing 

requirements, and then validating this model through the 

use of an OMNET++ simulation.  The simulation will then be 

used to provide feedback to further refine the system 

requirements and the functional specifications of the 

subsystems. 
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I. INTRODUCTION 

I keep six honest serving-men 
(They taught me all I knew); 
Their names are What and Why and When 

And How and Where and Who. 
I send them over land and sea, 
I send them east and west; 
But after they have worked for me, 
I give them all a rest. 
I let them rest from nine till five, 
For I am busy then, 
As well as breakfast, lunch and tea, 

For they are hungry men. 
But different folk have different views. 
I know a person small -- 
She keeps ten million serving-men, 
Who get no rest at all! 
She sends 'em abroad on her own affairs, 
From the second she opens her eyes -- 
One million Hows, two million Wheres, 

And seven million Whys! 
Rudyard Kipling, The Elephant's Child (1902) 

 

The primary goal of our thesis is to continue the 

development, refinement, and documentation of the high–

level requirement specification, baseline architecture, and 

real-time model of a notional Ballistic Missile Defense 

System (BMDS) that was started in earlier work.1  In 

particular, our focus is to try to determine what the 

potential timing constraints are on the BMDS we are 
                     

1 Dale Scott Caffall, “Conceptual Framework Approach for System-of-
Systems Software Developments” (M.S. Thesis, Naval Postgraduate School, 
Mar. 2003) 
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developing.  We then will create a high-level simulation of 

the BMDS that can validate those derived requirements and 

assess the timing constraints of the BMDS.  This simulation 

will also be designed such that it can be reused for 

further research on the subject. 

We intend to utilize establish software engineering 

practices that have been the bedrock of our graduate 

education to achieve these stated goals, and in particular 

we will utilize the Unified Software Developmental Process 

(USDP) to develop the BMDS.  The USDP is a use case driven 

incremental and iterative process consisting of five core 

workflows (requirements, analysis, design, implementation, 

and testing) and four phases (inception, elaboration, 

construction, and transition).2  In being iterative and 

incremental we can break the project down into smaller 

parts to analyze, design, implement, and test, and to make 

any necessary changes. 

As has been observed in some software projects, those 

practitioners who are doing the developing may have only a 

limited insight, if any at all, into the product being 

constructed.  It is paramount that the developers gain a 

fundamental understanding as part of the development 

process.  One needs to establish a solid foundation of 

understanding of “what problem it was we were trying to 

solve and why we are tying to solve it”3 by putting our 

“honest men” to work and researching the problem. 

Armed with a rudimentary knowledge of Ballistic 

Missile Defense (BMD) and the systems that comprise it, a 

host of software engineering classes, a development 

                     
2 Simon Bennett, John Skelton, and Ken Lunn, Schaum’s Outline UML, 

McGraw-Hill, London, 2001, pp 20-21. 
3 Professor Richard Riehle, Naval Postgraduate School, Jan. 2003. 
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process, and a profound quote from Kipling passed on to us; 

we embark upon our journey of discovery. 

The first issue at hand is the need to establish who 

is driving the need for a BMDS, in essence who is the 

customer, and why such a system is required:  the answer 

comprises Chapter II, in addition to a history of BMD, 

answering why current systems cannot fulfill the future 

needs of a BMDS, and the approach we intend take to achieve 

the goals of our thesis. 

Next we looked at what methodology the BMDS is to be 

implemented and integrated, and how that system is 

tactically envisioned to be employed in the prosecution of 

threat ballistic missiles.  We use a course-grain model of 

BMDS in order to reason about what specific sensors, 

weapons, battle manager, and command and control systems 

are intended to comprise a BMDS system-of-systems.  This is 

done to gain a fundamental understanding into the required 

functionality and overall system behavior.  All of which 

serve as the basic template as we continue development of 

the BMDS.  In essence, Chapter III becomes the requirements 

elicitation phase of the software requirements 

specification process. 

The process of developing the requirements 

specification and related documentation is the focus of 

Chapter IV.  We start by creating the vision and Software 

Requirement Specification documents and describing the BMDS 

architecture based on the information derived through the 

requirements elicitation phase.  This is followed by the 

process of specifying the system requirements by utilizing 

use cases to identify the who, what, and how of the BMDS 

behavior.  The use cases are then realized via 

collaborations consisting of a static class diagram and 
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dynamic system sequence diagrams.  From the use cases, the 

BMDS class diagram from previous work is further refined 

and expanded annotating the new derived classes, 

attributes, and messages that occur between those classes 

to statically describe the BMDS.  System sequence diagrams 

(SSD) are developed to show dynamic behavior of the BMDS 

through the necessary communication between the classes and 

objects of the BMDS via messages and the timeline in which 

those messages must occur in order to realize successful 

system operation in the prosecution of threat ballistic 

missiles.  From these artifacts we then develop a real-

time, high-level model that can start to identify the 

actual timing constraints that will be imposed upon the 

notional BMDS. 

To make the transition from understanding the 

requirements of the BMDS to the design and implementation 

of the simulation we utilize a real-time variation of the 

Unified Modeling Language, commonly referred to as UML-RT.  

UML-RT is designed specifically to model the software 

architectures of complex, event-driven, and distributed 

real-time systems to ensure that the essential structural 

and behavioral framework upon which all other aspects of 

the system depend are designed correctly and can 

accommodate changes over time.4  In developing the BMDS 

model with UML-RT we will gain a better understanding of 

the system-of-systems we are developing through 

visualization, behavior and structure specification, 

decision documentation, as well as creating a construction 

template from which we can start to build a prototype of 

the system to validate the derived requirements. 

                     
4 Bran Selic and Jim Rumbaugh, Using UML for Modeling Complex Real 

Time Systems, April 1998, pp 2-3. 
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A simulation model is defined as: 

An algorithmic representation of a system, 
reflecting system structure and behavior, that 
explicitly recognizes the passage of time, hence 
providing a means of analyzing the behavior of 
the system over time.5 
In order to perform a system analysis of the BMDS 

we will develop a OMNeT++ discrete event simulation of 

the Sensor Fusion Processor as a model for simulating 

the entire system, using the UML-RT model as a 

template for incorporating system requirements based 

on the documented artifacts.  The simulation is used 

to determine whether the requirements have been 

achieved, that the system operates within acceptable 

parameters, and to discover any other possible timing 

considerations and constraints.  The simulation is 

designed to allow for further research and development 

as the BMDS evolves. 

                     
5 Hassan Gomaa, Designing Concurrent, Distributed, and Real-Time 

Applications with UML, Addison-Wesley, 2000, p 752. 
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II. BMD OVERVIEW 

A. INTRODUCTION 

The purpose of this chapter is to provide the reader a 

background and insight into those factors that have driven 

the need for the development of a BMD through a quick look 

at the history of BMD and the current decisions being made 

by the national leadership that have and will continue to 

affect the development of the BMDS, in essence answering 

the why and who.  This is followed with a brief explanation 

of why legacy systems cannot fill the bill for future BMDS 

growth and why development of a new BMDS following a 

system-of-systems approach is necessary. 

 
B. A BRIEF HISTORY OF BALLISTIC MISSILE DEFENSE 

On September 8th 1944, the quest for an anti-ballistic 

missile defense system began in earnest to counter German 

V-2 rockets launched against civilian targets in France and 

England.  Initially, the only means of defense against 

these weapons of terror was to either locate and destroy 

the launch sites or occupy sufficient territory as to place 

the missiles out of range of civilian population centers.  

However, the Germans simply moved these weapons to more 

secure areas and continued to deploy them at targets within 

the operational range of the missile.  By the end of the 

war it was determined that over 3000 V-2’s had been 

launched with the majority of them targeted at London and 

Antwerp.  While militarily these weapons had little impact, 

the political and psychological effects were significant. 

Fortunately for the allies, the V-2 missiles were 

expensive to build, its guidance system was not highly 

accurate, the missile itself was unreliable, and the weapon 



8 

was introduced too late in the conflict to significantly 

affect the outcome of the war.  However, the V2 was a 

harbinger of future warfare.  With advances in missile 

technology, weapons development to include all forms of 

weapons of mass destruction (WMD), and more efficient and 

less costly production of ballistic missiles, they became 

quite an attractive means of bolstering the military 

capability of a country without bankrupting the economy. 

During the Cold War, the prospect of nuclear 

annihilation via the exchange of Intercontinental Ballistic 

Missiles (ICBM) between the U.S. and Soviet Union led to 

the implementation of numerous arms limitations treaties; 

the treaties placed constraints on the use of these weapons 

and the platforms with which to deliver them.  These 

treaties themselves became a means of providing BMD in that 

while technology was advancing for both sides it was not 

mature enough to develop a comprehensive, integrated system 

that could counter such a threat.  Those systems developed 

in the Cold War could only track the incoming warheads and 

attempt to destroy the reentry vehicles (RV) in 

endoatmospheric reentry phase with a nuclear defensive 

missile, such as Nike/Zeus in the case of the U.S., while 

conducting a nuclear retaliatory strike to prevent further 

launches.  The concept of mutual assured destruction (MAD) 

served as much of a deterrent than any fielded defensive 

system during the Cold War. 

As technology advanced, particularly with lasers and 

computers, the Reagan Administration pursued in earnest the 

development a space-based national BMDS known as the 

Strategic Defense Initiative (SDI), commonly referred to as 

the “Star Wars” program.  However, the ABM treaty signed in 

1972, while allowing research, precluded actual testing or 
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deployment of such a system.  These restrictions helped to 

eliminate the fear that one side could possibly gain the 

advantage of protecting themselves thus rendering the 

adversary’s weapons impotent, and with that distinct 

advantage possibly emboldening them to preemptively launch 

a first strike safely in the knowledge that they could 

repel a counter ballistic missile strike. 

With the fall of the Soviet Union, the potential for 

the use of ballistic missiles has actually increased.  This 

is primarily due to proliferation of Theater Ballistic 

Missiles (TBM) to Soviet client states during the Cold War, 

the selling of technology afterward by former Soviet 

states, and the fact that the control leveraged over those 

client states by Russia to keep them in line no longer 

existed.  This is evidenced by the proliferation of TBM in 

Third World countries such as Iraq and North Korea that 

possess Soviet-made missiles and using the technologies 

acquired to develop homegrown TBM’s such as the No Dong I, 

Taepo Dong I/II, and all variants of the SCUD, which 

currently threaten the U.S. and her allies. 

U.S. forces’ first real exposure to a TBM threat 

occurred during Operation Desert Storm in which military 

history was made with the first successful intercept of a 

SCUD by a Patriot missile.  On commencement of the 

Coalition air war, Iraq commenced SCUD attacks against 

targets in Saudi Arabia and Israel.  While tactically 

insignificant, the eighty-eight SCUD missiles that were 

launched in the resulting terror campaign nearly drew 

Israel into the conflict, which could have both unraveled 

the Coalition and resulted in the loss of support from Arab 

nations.  It was following this campaign that a significant 

amount of DoD focus was directed at the countering the 
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ballistic missile threat, and lead to the establishment of 

the Ballistic Missile Defense Organization (BMDO), later 

MDA, and the Joint Theater Air and Missile Defense 

Organization (JTAMDO), who have been mandated to develop a 

BMDS. 

 
C. DIRECTION OF BMD 

On December 13, 2001, President Bush announced to 

Russia and the world that the United States, after reeling 

from the devastating terrorist attacks of September 11 and 

facing new threats since the end of the Cold War, in 

particular rogue states and terrorist groups possessing WMD 

and ballistic missiles with which to deliver them, was 

serving the required six months prior notice necessary to 

pull out of the Anti-Ballistic Missile (ABM) Treaty of 

1972.6  This major decision has had a profound and dramatic 

impact on the National Security Strategy of the U.S. and 

has led to the direct and stated goal of developing a BMDS.  

By pulling out of the ABM Treaty, the President has now 

made it possible to fully develop and test BMD systems that 

were previously restricted to research only and if capable, 

to deploy those systems as desired. 

In order to facilitate the development of a BMDS, just 

two weeks after the President’s announcement, Secretary of 

Defense Rumsfeld, in a memorandum dated 2 January 2002, 

announced the restructuring of the entire National Missile 

Defense (NMD) Program placing all programs under the 

Missile Defense Agency (MDA): MDA, reports directly to the 

Under Secretary of Defense for Acquisition, Technology and 

Logistics (USD AT&L), and was provided guidance for the 

                     
6 http://www.whitehouse.gov, Press release 13 Dec. 2001. 
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development and employment of an integrated and layered 

BMDS that will be able to  

detect, track, intercept and defeat ballistic 
missiles in all phases of their flight (i.e., 
boost, midcourse, and terminal) against all 
ranges of threats.7 

 
Additionally, the memo streamlined the acquisition process 

for all related BMD systems by removing them from 

constraining government instructions and directives, 

allowing MDA to pursue a capabilities-based approach toward 

BMD systems research, development, test and evaluation. 

In an effort to make BMD a reality, President Bush 

announced to the nation and the world,  

I made a commitment to transform America’s 
national security strategy and defense 
capabilities to meet the threats of the 21st 
century… I have directed the Secretary of Defense 
to proceed with fielding an initial set of 
missile defense capabilities.  We plan to operate 
these initial capabilities in 2004 and 2005, and 
they will include ground-based interceptors, sea-
based interceptors, additional Patriot units and 
sensors based on land, sea, and in space.8 

 
By committing to field systems in an incremental fashion as 

those systems are developed, the intent is to deploy an 

initial system, which can be continuously modified and made 

more robust over time. 

In order to achieve these stated goals and critical to 

the success of the implementation -- and both at the heart 

of the BMD System and the evolving BMD Strategy -- is the 

development and future employment of the Command, Control, 

Battle Management and Communication (C2BMC) System.  The 
                     

7 Office of the Secretary of Defense, SecDef Memo dated 2 Jan. 2002. 
8 http://www.whitehouse.gov, Press release 17 Dec. 2002. 
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ability to detect, track, identify, and target threat 

ballistic missiles in all phases of their flight and 

provide weapons systems the accurate and timely information 

necessary to consummate an intercept is the primary goal of 

BMD. 

 
D. LEGACY SYSTEMS 

In this thesis we lay aside any restrictions imposed 

by legacy systems, as the cost of upgrading them is 

prohibitive and the restrictions they bring with them 

without a complete upgrade would make the President’s long 

term goal of defending the nation from ballistic missile 

threats untenable.  As such, we have striven to incorporate 

the latest component-based system design methodologies to 

provide for ease of system decomposition and evolution of 

the system as threats, doctrine, and technology change.  

However, these systems initially will need to be utilized 

until a more robust and responsive system can be 

implemented.  Therefore, these legacy systems need to be 

discussed; particularly with reference as to why they 

cannot be improved upon to fulfill the future needs of the 

envisioned BMDS. 

Prior to Desert Storm, with the primary threat being 

ICBMs stationed in the former Soviet Union, the BMD System 

consisted of large, fixed radar sites in the northern 

latitudes, and Defense Support Program (DSP) satellites in 

geosynchronous orbits, scanning the predicted avenues of 

approach of possible ICBM attacks and nuclear-tipped 

defensive missiles poised to intercept incoming ICBM’s.  

These systems were considered national assets and strategic 

in nature, reporting directly to NORAD HQ at Cheyenne 
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Mountain, Wyoming, which in turn reported to the National 

Command Authority (NCA) in Washington D.C. 

BMD weapons-system development prior to Desert Storm 

was not predicated on the possibility of having to conduct 

integrated BMD at a tactical level, and therefore was not 

optimized to perform that mission.  In fact, most weapons 

systems were developed in a “stovepipe” fashion that 

necessitated significant modifications to existing software 

systems or unique network designs to allow interoperability 

within an established command and control (C2) 

infrastructure.  Each of the services have developed data 

links that provided connectivity between their particular 

units such as the Ground Based Data Link (GBDL) and Army 

Tactical Data Link One (ATDL-1) for Army and Marine ground 

units, the PATRIOT Digital Information Link (PADIL) 

specifically designed for the PATRIOT system, and the 

Navy’s Link-4A (TADIL-C) for two-way interceptor air 

control.  None of these data links have a direct means to 

integrate with one another and must all be translated into 

another C2 data link, such as Link-11 or Link-16, in order 

to transmit and receive time-critical information and 

achieve connectivity and interoperability. 

Proliferation of smaller theater and tactical 

ballistic missiles to Third World countries and the advent 

of Desert Storm necessitated a change in the design of 

weapons and C2 systems.  During Desert Storm, the Coalition 

forces developed and deployed a defensive system to counter 

Iraqi SCUD missiles that are not much more sophisticated 

than the German V-2 rocket.  The theater-level air-defense 

system consisted of sensor and weapon systems tied together 

through a variety of previously mentioned legacy data link 

systems in order to develop a coherent air picture.  The 
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complexity of the architecture and the limitations of those 

older data link systems required the coalition to develop 

custom patches to attain a comprehensive defense.  For 

instance, initially Link-11 was implemented as a single 

data link with all possible units participating.  However, 

as units joined the network and started to enter tracks the 

shear volume of all the track data saturated many of the 

participants who had relatively limited track file capacity 

and prevented many critical contacts from being presented 

in a timely fashion.  To address this problem, multiple 

Link-11 nets were established with gateway units filtering 

data as necessary to preclude saturation. 

While the aforementioned “fixes” worked to a limited 

degree, latency due to the numerous translations among 

disparate data links and communications systems, lack of 

complete connectivity, and differing navigational data 

precluded attainment of an accurate, near real-time C2 

environment.  This was evident by the minimum response time 

available to the Patriot batteries in response to SCUD 

launches during Operation Desert Storm despite early launch 

detection by Defense Support Program (DSP) satellites. 

Since the conclusion of Desert Storm, systems such as 

the Cooperative Engagement Capability (CEC) and the Joint 

Tactical Information Distribution System (JTIDS) have been 

introduced to increase the throughput of data, enhance the 

overall situational awareness of participating units, and 

in the case of CEC’ providing a composite track picture 

consisting of radar-parametric and identification data so 

that units outside the detection range of a target can 

actually launch on remote.  These systems have been 

utilized in operational and test and evaluation exercises 

to develop an effective, recognizable air picture and are 
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anticipated to migrate into the arena of BMD.  In fact, 

Link 16/JTIDS has been identified as the initial C3 system 

to integrate the BMDS with the potential to provide a 

Single Integrated Air Picture (SIAP) for BMDS through CEC 

sensor fusion.  However, a recent study conducted by the 

Naval Studies Board of the National Research Council found 

that both of these systems would be inadequate in the long 

run for a BMDS. 

As previously described, the JTIDS/Link 16 
approach is a bandwidth limited, rapidly 
obsolescing technology that will impede future 
operational flexibility. There are a variety of 
planned improvements that may make it somewhat 
more effective, and these should be continued as 
planned. However, at each stage, the Navy should 
evaluate the utility and cost of the improvements 
against the evolving capability provided by the 
Internet technology prototyping. The goal should 
be to use JTIDS/Link 16 when nothing better is 
available but to wean the BMC3 system from 
depending on it. 
CEC is an excellent implementation of the 
philosophical approach advocated by the committee 
in that it seeks to accommodate distributed 
sensors. It provides the basis for the current 
self-defense capabilities and gives the Navy some 
area defense capability. It is, however, a 
closed-loop system that will not provide the 
long-term capabilities needed for a more complete 
TMD BMC3.9 
 
Therefore a new and more modern approach, using the 

latest system and software engineering methodologies 

available to integrate all of the subsystems that will 

comprise the BMDS, needs to be undertaken to develop the 

software for the follow-on BMC3 system.  Inevitably, 

“Software, not hardware, will determine the ultimate 

                     
9 Naval Studies Board National Research Council, Naval Forces 

Capability for Theater Missile Defense, National Academies Press 2001, 
p 162. 
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functionality of the system and the success of the system 

in the end user’s hands…”10 

 
E. SYSTEMS OF SYSTEM APPROACH 

Dealing with systems of complexity requires 
nontrivial approaches, and a system of subsystems 
is a means to this end.  Surely the alternatives 
are worse, as we would end up with incredibly 
complex systems that no one could possible 
understand, with indeterminate behavior, and 
design based on shared functionality, poor 
partitioning, and threaded code in such a way as 
could never be unraveled. … And what happens if 
we don’t do a good job of systems engineering?  
The system will become brittle and will resist 
change because of the weight of the requirements 
assets will “bind” us to the implementation.  Our 
subsystem requirements have taken control of our 
design flexibility, and a change in one will have 
a ripple effect in other subsystems.  These are 
the “stovepipes” systems of legend, and such 
systems resist change.  In their interfaces, the 
problems may be worse.  If the interfaces are not 
properly specified, the system will be fragile 
and will not be able to evolve to meet changing 
needs without the wholesale replacement of 
interfaces and the entire subsystems that were 
based on them.11 
 
As previously shown, current C3 systems, while 

providing an initial capability to fulfill President Bush’s 

mandate, will not be able to grow to meet the projected 

demands nor take advantage of advances of current and 

future commercial technology.  The reality is that even as 

JTIDS is being fielded, it has been in development for over 

thirty years and has already become a legacy stovepipe 

system with minimal room for future growth.  One of the 

major problems with JTIDS is that it requires significant 
                     

10 Dean Leffingwell, Don Widrig, Managing Software Requirements, 
Addison-Wesley, 2000, p 63. 

11 Ibid, p 65. 
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lead-time of about one to two weeks and foreknowledge of 

the participating platforms in order to develop the network 

with which to integrate those systems and distribute the 

software to the units.  CEC, which is outstanding at 

developing a local SIAP, requires very specific equipment 

and software to implement a sensor fusion network and does 

not have the capacity to provide the complete set of data 

that a tactical data link does. 

In BMD scenarios it is not envisioned that a 

sufficient amount of time will be available to configure a 

JTIDS network rapidly enough to meet the threat or to 

include whatever units that are available to operate 

together in a cohesive manner to affect a proper defense.  

Also, as systems are modified or developed over time they 

must be able to participate in the network with a minimum 

of overhead and impact, that is be plug-and-play, and 

neither of these systems will be able to offer this 

capability even after significant planned system evolution. 

Continuing the process of systems-of-systems 

development utilizing the BMDS as a case study12, we intend 

to extend the study to the next level of realization by 

utilizing established software engineering requirements 

specification practices to further define the conceptual 

system of systems and develop a network simulation based on 

those findings in an attempt to capture the high level 

timing constraints imposed upon the system.  These will 

later serve as a vehicle for continued study and refinement 

of the conceptual system of systems and provide an initial 

                     
12 Caffall, D. S. and Michael, J. B. “A new paradigm for requirements 
specification and analysis of system-of-systems”. Wirsing, M., Balsamo, 
S., and Knapp, A., eds., Lecture Notes in Computer Science: Proc 
Monterey Workshop 2002: Radical Innovations of Software and Systems 
Engin. in the Future, Berlin: Springer-Verlag, 2003. 
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simulation of the network that can be expanded for 

utilization in further research. 
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III. BMDS OPERATING ENVIRONMENT 

A. INTRODUCTION 

The Standish Group conducted a survey in 1994 to 

determine what were the most common factors associated with 

software projects that met with significant problems.  One 

of the three most commonly identified faults was incomplete 

requirements specification.13  As part of the requirements 

elicitation process for this project we need to determine 

and understand under what paradigm or methodology the BMDS 

is to be developed, what sub-systems are going to comprise 

the BMDS, and how they are intended to operate together as 

a system-of-systems.  Once this information has been 

determined the requirements specification process can be 

documented and software design can commence which in turn 

leads to identifying the timing constraints of the BMDS.  

The purpose of this chapter is to provide the information 

that is critical for identifying capabilities, functional 

requirements, and non-functional requirements. 

MDA has set clear expectations and guidelines under 

which the BMDS Battle Manager (BM) is to be developed. 

The BMDS BM will substantially enhance BMDS 
effectiveness beyond that achievable by stand-
alone systems.  The BM component integrates kill 
chain functions (surveillance, detect / track / 
classify, engage and assess) across the layered 
defenses (boost, mid-course, terminal, and 
external sensors (Space Based Infrared System Low 
- SBIRS Low)) and evolves with the BMDS elements.  
Initially, BM will deliver the hardware/software 
(HW/SW) necessary to provide the means for 
executing pre-planned responses by integrating 
available information to provide the user with 
increased automation capability and ability to 
integrate information from increasingly diverse 

                     
13 The Standish Group, Charting the Seas of Information Technology, 

1994. 
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resources.  BM will eventually provide a highly 
flexible and configurable framework for real 
time, adaptive coordination of missile defense 
assets, while also supporting the incorporation 
of new elements.14 

 
Each one of the functional areas in the kill chain and 

phases of flight for a ballistic missile places unique 

requirements on the overarching BMD system-of-systems, as 

well as potential trade-offs among the non-functional 

requirements (e.g., timing vs. safety) that need to be 

addressed; each requirement has an impact on timing 

constraints that need to be identified and evaluated.  

Lastly, the types of systems that will comprise the BMDS, 

sensors, weapons, and C2, will need to be evaluated to 

determine what each of the timing requirements are in order 

to ensure that when they are integrated as a system-of-

systems will operate effectively in the prosecution of a 

ballistic missile threat. 

                     
14 MDA Exhibit R-2 RDT&E Budget Item Justification (PE 0603889C), 

Feb. 2003. 
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Figure 1.   BMDS Kill Chain Function15 
 

B. THE KILL CHAIN 

The kill chain template (Figure 1) is utilized by 

virtually every weapons system to describe its 

functionality and to determine its effectiveness.  As 

mentioned in the previous quote, it is also a required 

performance function of the BMDS and serves as the 

foundation for the development of the use cases from which 

the understandings of the BMDS requirements are to be 

extrapolated. 
                     

15 Dale Scott Caffall, “Conceptual Framework Approach for System-of-
Systems Software Developments” (M.S. Thesis, Naval Postgraduate School, 
Mar. 2003), p 20. 
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1. Surveillance 

The process of surveillance requires that sensors 

monitor specific geographic areas of interest for ballistic 

missile launch events.  This implies that a commander with 

appropriate authority to direct the sensors that will 

conduct the surveillance, in response to a potential 

threat, has provided a specific queuing order or has 

determined that an area of interest warrants consistent 

monitoring based on high probability of an event occurring 

in that specific region.  For instance, an increase in 

hostile rhetoric by a nation in possession of ballistic 

missiles may require that assets be committed to monitor 

specific regions to ensure that should a ballistic missile 

event occur, it would be detected with a sufficient amount 

of time to react accordingly.  This is in contrast to 

certain nations that are known to possess large quantities 

of ballistic missiles, such as China or North Korea that 

will, in all likelihood, require continuous surveillance.  

The BMD system must manage all surveillance assets to 

ensure that the right assets are looking where they need to 

be and that there are sufficient assets for required 

coverage. 
2. Detection 

Detection is critical to any BMD system; the bottom 

line is that if you do not see the threat missile or know 

that it is coming then you cannot defend against it.  Once 

a ballistic missile event has occurred and it has been 

detected by a sensor system, the BMDS must assess that what 

is actually being detected is in fact a ballistic missile 

threat and if it is, whether or not there is already a 

preexisting track or cueing message on that particular 

contact in the network.  If a contact is evaluated as a 

threat ballistic missile and a preexisting track does not 
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exist, a new track must be developed and a queuing message 

distributed as quickly as possible so that all other 

participating IR and radar sensors can make their own 

detection and start the tracking process of the missile in 

flight.  In doing this, the target’s position can be 

refined through track data comparison and fusion, which can 

then be used to develop a weapons solution to prosecute the 

target.  The most probable scenario is that a space-based 

infrared sensor will be the first to detect a ballistic 

missile launch and will dispatch a queuing message to other 

sensors that are within the field of view of the missile.  

As other sensors detect and track the ballistic missile 

they will provide their parametric data on the contact to 

develop a combined track through fusion and correlation. 

3. Tracking 

Once a missile has been detected, sensors must apply 

discrimination processing to ensure that what is being 

detected is a valid target and not an environmental 

anomaly, decoy, or countermeasures being conducted against 

the BMDS.  Once the target survives this process, tracking 

algorithms are applied over a series of valid detections to 

develop a local system track where all of the target’s 

pertinent information such as speed, altitude, range, 

radial velocity, geodetic positioning data, and heading can 

be derived utilizing information input from other systems.  

This information must then be stored for its own use and 

shared with all other units participating in the BMDS. 

It is envisioned that the sensors will share the track 

information to develop a composite track much the same way 

CEC does in an effort to produce a comprehensive SIAP.  By 

fusing the track data into a composite picture the 

continuity of the track is preserved, which also provides 
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the necessary parametric data to ensure that an intercept 

can be conducted by the most capable weapons platform at 

the earliest possible opportunity even when that weapons 

system is outside the field of view of the missile.  Thus 

the sensors must develop and report tracks in an 

asynchronous manner; this affects the correlation and 

fusing of tracks.  Track fusion and discrimination 

algorithms are currently being developed as part of Project 

Hercules, whose goal is to develop a composite picture and 

target discrimination in a high countermeasure 

environment.16 

4. Identification 

The issue of developing the capability of being able 

to positively identify a ballistic missile based on its 

performance and radar and IR signature has been on going 

since the advent of the SDI in the 1980’s.  As a process 

within any BMDS, because a ballistic missile is by its 

nature a passive object, it requires that enough 

information be resident within a sensor detection signal, 

that information can be readily extrapolated and exploited 

in an effort to identify the object, and that multiple 

sensor information can be correlated and fused to develop a 

positive identification of the ballistic missile. 

This information would then need to be compared to a 

database of known missile characteristics in an effort to 

positively identify the type of missile.  Additionally, 

this process would also need to incorporate the process of 

discrimination between a reentry vehicle and any 

countermeasures deployed to confuse the BMDS particularly 

in the midcourse phase, which will be discussed later.  

This process can be time consuming and computationally 
                     

16 MDA Exhibit R-2 RDT&E Budget Item Justification (PE 0603889C), 
Feb. 2003. 
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intensive and may not yield a positive identification if 

the signature was not extractable, the information was not 

evaluated properly, or a target-signature match was not 

possible due to inadequacies of the database. 
5. Target/Engage 

In order for the BMDS to be effective it must be able 

to place a weapon on a target.  The BMDS must assess what 

weapons are available and are in an opportunistic position 

to consummate an intercept and issue launch orders in a 

timely enough fashion that the weapon has a possibility of 

making the intercept before the ballistic missile exceeds 

its capabilities.  For instance, a SM-3 missile fired from 

an AEGIS cruiser at a ballistic missile that is traveling 

away from it must have the speed necessary to catch it 

before it exceeds the SM-3’s maximum effective range; 

otherwise, the SM-3 becomes merely a wasted asset. 

The BMDS must also provide target tracking that is 

accurate enough that a weapons system can determine its 

probability of destruction, which in turn will be needed by 

the BMDS to determine which weapons system to employ.  The 

BMDS must also provide predictive tracking data and the 

lead necessary to place an interceptor kill vehicle at the 

proper point in space to either hit the target for a 

ballistic weapon or place an active homing hit-to-kill 

(HTK) vehicle into a position where its own organic sensor 

can take over and refine the intercept solution until 

collision. 

Critical to weapons conservation is that only one 

interceptor should be assigned at any one time to a each 

ballistic missile.  The BMDS must assure that only one 

weapon is assigned to engage a target, unless it is 

determined that the assigned weapon cannot consummate the 
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intercept or if a weapons system through system failure is 

operating autonomously. 
6. Assess 

The ability to assess the effectiveness of an 

intercept conducted against a threat ballistic missile is 

critical for conservation of limited weapons and will drive 

the weapons employment doctrine.  Ideally, you would want 

to employ a “Shoot, Look, Shoot” doctrine in which an 

interceptor is fired at the earliest opportunity, the hit 

evaluated, and if unsuccessful another interceptor is 

launched.  If the timeline is compressed or an immediate 

assessment cannot be made, a more liberal weapons 

employment approach must be used, such as “shoot, shoot, 

look” where multiple weapons are fired at a target until an 

accurate assessment can be made.  The latter approach has 

the potential to expend many weapons early on, making it 

difficult to defend against additional threat ballistic 

missiles launched after the initial attack.  However, this 

may be necessary if the potential for use of WMD exist and 

opportunities for intercept are limited.  Throughout the 

assessment process, all of the sensors must attempt to 

track the target to provide feedback if the intercept was 

successful or not and if unsuccessful to be well prepared 

to continue prosecution of the threat. 
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Figure 2.   An Integrated, Layered Defense Against 

Missiles of All Ranges 
 

C. PHASES OF FLIGHT 

A ballistic missile has three distinct phase of 

flight: the boost, midcourse and terminal phases (Figure 

2).  Each one of these phases has certain advantages for 

conducting an intercept while the missile is in each 

particular region and some significant disadvantages that 

will need to be minimized if possible in order for the BMDS 

to consummate an intercept.  We will need to look at each 

phase to determine what ramification each phase has on 

timing considerations in developing a system-of-systems. 
1. Boost Phase 

This region of flight is the most desirable for 

conducting an intercept of a threat ballistic missile.  The 

missile is traveling at its slowest rate of speed during 

the boost phase, the large IR signature caused by the 



28 

launch plume is usually easier to detect provided that 

there is no obscurant such as weather, and most 

importantly, if a ballistic missile is intercepted and 

destroyed in this phase, in all likelihood the warhead and 

debris will fall well short of the intended target and 

hopefully on the territory of the nation that launched the 

missile. 

However, this is also the most difficult phase in 

which to intercept a ballistic missile and will require 

perhaps the greatest level of automated decision making due 

to the short duration of this phase.  It is estimated that 

the engagement time for a weapons system during the boost 

phase varies from one minute for a short-range ballistic 

missile up to four minutes for an ICBM, which is our 

primary focus of concern in this thesis.  While the missile 

starts at zero speed and is most vulnerable due to lack of 

speed for maneuverability, and is more easily detectable 

due to the size of the entire missile and the heat 

signature the booster produces, it is continuously 

accelerating until booster burnout and detachment of the 

reentry vehicle, making it harder to hit as time passes 

(this phase is also referred to as the post-boost phase in 

some literature)17.  This also makes the kill chain timeline 

short due to the need of detecting and identifying the 

threat missile properly, therefore necessitating a 

relatively high reliance on automation of battle 

management.  Adding into the equation natural phenomenon 

such as weather and the ability to launch a weapon well 

within one territorial boundary beyond the detection of 

local active sensors and reach of weapons systems, the 

                     
17 BMDO, Harnessing the Power of Technology, The Road to Ballistic 

Missile Defense From 1987-2007, Sep. 2000, p 6. 
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difficulty to conduct an intercept of a ballistic missile 

in the boost phase of flight becomes even more difficult. 
2. Midcourse 

The midcourse phase of flight is defined as that 

portion where the missile has departed endoatmospheric and 

travels in the exoatmospheric region.  It is during this 

phase of the missile’s flight which provides the greatest 

opportunity to engage with an interceptor based on the 

length of time that the missile is in this phase, generally 

an ICBM remains in this phase of flight up to twenty 

minutes prior to entering the reentry or terminal phase.  

In addition to the extended period of time to conduct an 

intercept, the missile is also in a coast mode with no 

additional source of power and maintains a relatively 

predictable path.  Therefore the ability to launch multiple 

interceptors from geographically dispersed locations, and 

the ability to assess the outcome of those launches is 

increased.  The increased time available also allows for 

the utilization of the look, shoot, look doctrine enhancing 

the probability of destruction in this phase. 

The down side to this phase of flight is that the 

incoming missile can deploy countermeasures that the BMDS 

must be able to discriminate against to avoid track 

saturation and detect the actual reentry warhead.  This has 

been identified by MDA as perhaps the most difficult 

challenge to overcome in developing and implementing an 

effective BMDS. 
3. Terminal 

The terminal phase begins at the point at which the 

reentry vehicle enters the endoatmospheric region.  This 

phase is short: approximately thirty seconds, due to the 

velocity of the reentry vehicle and the effects of gravity.  

The advantages of this phase are that the reentry vehicle 
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is still on a predictable path and discrimination between 

countermeasures and actual warhead is much more feasible 

than in the other phases of flight.  This is due to the 

fact that if any countermeasures were deployed, they would 

more than likely weigh less than the warhead and would slow 

down or possibly burn up on reentry, thus unmasking the 

actual warhead increasing the probability of destruction of 

the actual target. 

The major disadvantages of trying to engage during the 

terminal phase are that the time line is short: reaction 

time is limited as is the number of interceptors that can 

be deployed against the reentry vehicle.  Add into this 

equation the closure speed of any interceptor and the 

velocity of the missile, the decision of when to launch is 

relatively more time critical than the other phases.  This 

time line can be even shorter if the missile is of the 

short or medium range variety that does not enter the 

exoatmospheric regime.  Also, as happened in Desert Storm, 

even if a ballistic missile is intercepted, the debris will 

likely fall on friendly territory. 

 
D. BMDS COMPONENTS 

A major defensive system can be broken down in three 

primary elements that perform the functions of the kill 

chain throughout all the phases of the ballistic missile’s 

flight; these are the sensors, weapons, and C2.  Each of 

the components within the BMDS has unique requirements both 

in the way it conducts systems operation and processing of 

data, the frequency of the communication mode and data 

throughput, the overhead of encryption and decryption, and 

the distance that it must transmit and receive the data. 
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1. Sensors 

The BMDS will need to consist of air-, space-, ground-

, and sea-based sensors to provide as complete a level of 

coverage as possible to detect, track, and report ballistic 

missiles through all phases of flight (Figure 3).  These 

will consist of passive optical, infrared, and ultraviolet 

sensors, primarily in space, LADAR (laser detection and 

ranging) on aircraft, and active radars on board aircraft, 

ships, and ground-based locations.18  These sensors will be 

able to operate autonomously or as envisioned as a system-

of-systems layered and networked providing the most current 

and accurate track data available to all participating 

units within the BMDS architecture. 

 
Figure 3.   BMDS Sensor Diagram.19 

 
Currently, the primary space-based passive IR BMDS 

sensors are the older DSP satellites; they will start to be 

replaced by the Space Based Infrared System-High (SBIRS-

High).  SBIRS-High will consist of six satellites, four in 
                     

18 Ibid. p 8. 
19 Ibid. p 8. 
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geosynchronous orbit (GEO) and two in highly elliptical 

orbits (HEO), also known as Molniya orbit, and their 

sensors will cover short-wave infrared, expanded mid-wave 

infrared and see-to-the-ground bands, allowing it to 

perform a broader set of missions as compared to DSP. 

SBIRS-Low, which is the critical component of SBIRS, 

will consist of twenty-four Low Earth Orbit (LEO) 

satellites providing a unique precision boost, midcourse, 

and reentry tracking capability, and providing decoy 

discrimination data that is critical for effective BMD.  

The Low satellite’s sensors will operate across long and 

short wave infrared, as well as the visible light spectrum.  

The long wave infrared (LWIR) spectrum is unique to the Low 

system in that it will allow cold-body tracking of a 

missile in the mid-course phase of flight.20 

The SBIRS concept provides a synergistic approach to 

the detection of ballistic missiles by distributing sensor 

tasking which will prevent overloading by a single 

satellite and allow multiple satellites to track targets 

improving target data and providing continuous tracking of 

a BM from launch through reentry.  Both the SBIRS-High and 

SBIRS-Low will have the ability to detect launches and will 

be able to handoff a target to another satellite as the 

threat missile leaves its field of view and can cue ground-

based radars while the threat missile is still below the 

radars’ horizon. 

In considering timing issues with space-based IR 

sensors, the detection is passive and in one direction, 

that is energy is transmitted by the missile and detected 

by the IR sensor.  Therefore, the time it is merely a 

function of the range of the ballistic missile from the 

satellite.  This is summated with the total processing time 
                     

20 http://www.fas.org/spp/starwars/program/dote99/99sbirs.htm. 
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and the time to transmit the track to other sensors within 

the network. 

As previously mentioned, the active detection systems 

within the sensor category will consist of ground-, air-, 

and sea-based radars.  Active sensors will generally 

require more time overall to develop a track due to the 

need for transmitting a signal out and receiving a reply, 

that is, the range of the sensor to the target squared, in 

addition to the processing and transmitting of a track.  

However, this time is shortened when the target is in close 

proximity to the sensor.  In order to conduct surveillance 

and target tracking of ballistic missiles, radar sensors 

require large amounts of power; that is why space-based 

radar sensors are not currently envisioned for use.  

However, for the purposes of simulating a system-of-

systems, inclusion of such capability needs to occur to 

validate the concept of this approach. 

The current plan for sea-based radar systems is to 

provide upgrades to the AEGIS systems on board ships to 

bring them up to BMDS SPY-1D capabilities.  In conjunction 

with the SM-3 missiles, AEGIS systems will be able to 

provide midcourse phase surveillance, tracking, and 

intercept capabilities as part of the BMDS.  However, the 

sea-based BMDS, by its very nature, provides additional 

time considerations that must be addressed.  This is due to 

the fact that for midcourse interception to occur, 

particularly for all but possibly short-range ballistic 

missiles, the AEGIS system will more than likely be out of 

a direct line-of-sight communications path with other BMDS 

participating units.  This implies that any AEGIS ship must 

transmit and receive via RF satellite communications, in 

effect doubling the communications distance, in addition to 
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the time required for active detection and track 

processing. 

Ground-based radar (GBR) systems will consist of older 

but Upgraded Early Warning Radars (UEWR) and new X-band 

Radar (XBR) systems both of which will track and provide 

initial planning for an intercept primarily in the 

midcourse and terminal phases of flight.  The UEWR are 

currently in operation and will be used primarily for 

surveillance, detection and tracking of ballistic missiles. 

The XBR systems, in addition to conduct standard 

active radar functions, will also possess the capability to 

provide primary fire-control information for ground-based 

interceptors (GBI), provide discrimination among warheads 

and countermeasures or decoys, providing this information 

to the GBI, and kill assessment of the targeted threat 

ballistic missile.  Plans currently call for an XBR to be 

outfitted on board a sea-based platform, similar in 

appearance to a floating oil rig, to be stationed in Adak, 

Alaska with follow on systems to be field at other 

locations. 

The GBR systems currently in use and future systems 

will need to be place in remote locations such as Alaska, 

coastal areas, and in the northern Midwest in order to 

detect the shortest and most likely avenue of approach of 

ballistic missiles targeted against the U.S.  These systems 

will have considerably longer radar detection ranges at 

maximum distance.  The communications path, however, while 

not shorter in distance for transmission, will have high 

bandwidth data-transmission capability. 

There currently are no air-based radar, infrared, or 

LADAR capabilities that can track a ballistic missile 

consistently throughout all phases of flight, and with 

limited capability in the exoatmospheric regime.  There are 
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developmental systems, such as radar upgrades for both 

AWACS and E-2C aircraft, and IR and LADAR packages for 

surveillance aircraft as well as unmanned aerial vehicles 

(UAV) that provide promise for detection and tracking 

capabilities in the boost and terminal phases of flight. 
2. Weapons 

The key to any successful defensive system is the 

ability to negate the threat either through deception or 

destruction.  BMDS is no exception and there are numerous 

weapons programs currently under development with each 

being designed to intercept a ballistic missile in one or 

more phases of flight from geographically disparate 

locations (Figure 4). 

 
Figure 4.   BMDS Interceptor Diagram.21 

 

Critical to the effectiveness of each of these weapons 

systems is that they must be in a position to consummate an 

intercept and deliver enough energy to destroy the threat.  

The more accurate the weapons are the less energy that will 

be required to destroy it.  The types of weapons that are 

currently being pursued are HTK interceptor vehicles.  With 
                     

21 BMDO, Harnessing the Power of Technology, The Road to Ballistic 
Missile Defense From 1987-2007, Sep. 2000, p 9. 
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technological advances allowing size and weight reductions 

and removing the explosive warhead (either conventional or 

nuclear) of the interceptors has been translated into a 

higher degree of accuracy, greater thrust, agility, and 

lower cost.22 

There are existing weapons systems that are currently 

being modified to support the BMDS concept.  As mentioned 

earlier, the AEGIS system with the SM-3 HTK missile 

possessing a LWIR seeker head will provide sea-based 

midcourse-interception capability, which can also be 

utilized in the boost and terminal phase if the ship is so 

positioned.  The Patriot Advanced Capability–3 (PAC-3) 

system will support greater terminal-phase interception 

capability providing a layered defense in conjunction with 

the Theater High Altitude Area Defense (THAAD) System, 

which in turn will address the short- and medium-range 

threat at high altitudes. 

Under development is the Ground-Based Interceptor 

(GBI), which is a HTK vehicle designed to conduct 

intercepts of ballistic missiles from mid-course to 

terminal phases.  Once the missile is launched, it receives 

guidance from the BMC3 until it can actively acquire the 

threat missile with its own sensor.  Once the GBI starts 

active tracking of the threat, it will prosecute the target 

on its own with the ability to conduct discrimination of 

countermeasures and decoys. 

In an effort to conduct intercepts in the boost phase 

the Airborne Laser (ABL) is being developed.  A chemical 

laser placed on board a 747, its mission is to conduct 

boost-phase intercepts by directing a high-energy laser 

onto a vulnerable portion of a ballistic missile causing 
                     

22 Ibid, p 9. 
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intense heat and explosion.  Because the ABL is designed to 

destroy ballistic missiles in the boost phase, the aircraft 

must be close enough to the launcher to employ the laser 

within its effective range and must have the most up-to-

date and accurate information available in order to target 

the laser beam on to a specific portion of the missile 

where the damage will be the greatest.  This same concept 

is also being pursued for a similar space-based system, 

although current technology has not advanced to the point 

that can make this project realizable in the near future. 
3. Command, Control, Battle Management, and 

Communications (C2BMC) 

Integral for any of the aforementioned weapons systems 

to be effective is the ability to accurately predict a 

ballistic missile’s path based on historical track data and 

quickly determine the most capable and opportunistic weapon 

to employ.  The C2BMC must be able to perform these 

functions quickly, as well as integrate and coordinate with 

other C2BMC nodes within the BMDS and provide direction, 

orders, and controls to subordinate sensors and weapons, 

regardless of the number of units under the C2BMC control.  

As a threat ballistic missile transits from one sensors 

field of view to another, the C2BMC must ensure a timely 

and positive handover and cue other local, bordering C2BMC 

nodes and higher command elements of the presence of threat 

ballistic missiles.  In essence the C2BMC must be the 

arbitrator and resources manager for its designated area of 

responsibility (AOR), performing the following tasks: 

creating a defensive plan, optimizing overall defense, 

utilizing all resources, controlling systems according to 

unified concepts, improving overall defense structure 

efficiency, and minimizing overkill phenomenon.23 
                     

23 Haim Baruch, Battle Management, AIAA, 2000, p 207. 
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IV. BMDS REQUIREMENTS SPECIFICATION 

A. INTRODUCTION 

 
Figure 5.   Process of BMDS development24 

 

From the onset, we envision that the BMDS, as a 

system-of-systems, will be designed with high cohesion with 

low coupling because of both its requirements for 

distributed and real time prosecution of ballistic 

missiles.25  Additionally, as previously mentioned in 

Chapter II, the Presidents vision is to implement systems 

                     
24 Dean Leffingwell, Don Widrig, Managing Software Requirements, 

Addison-Wesley, 2000, p 263. 
25 Caffall, D. S. and Michael, J. B. “A new paradigm for requirements 

specification and analysis of system-of-systems”. Wirsing, M., Balsamo, 
S., and Knapp, A., eds., Lecture Notes in Computer Science: Proc 
Monterey Workshop 2002: Radical Innovations of Software and Systems 
Engineering in the Future, Berlin: Springer-Verlag, 2003. 
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as they are developed over time which necessitates this 

methodology to prevent the pitfalls of stove piping. 

We have approached the problem of developing the 

requirements of such a system-of-systems by utilizing 

standardized software engineering processes, as depicted in 

Figure 5, in an effort to determine both the high level 

requirements of the BMDS and to flush out the potential 

timing constraints on the system. 

 
B. VISION AND SOFTWARE REQUIREMENT SPECIFICATION (SRS) 

DOCUMENTS 

The first stage in the continuing development of the 

requirements specification for the notional BMDS was to 

create a vision document (Appendix B) based on the previous 

work completed.26  The purpose of this document is to 

establish a starting point for the project that capture the 

needs of the user, in this case MDA, the initial features 

and high-level capabilities of the system, some of the 

high-level requirements, and definition of the problem and 

solution at a high-level of abstraction.  Utilizing a 

vision document template we were able to use the kill chain 

process to determine foundation for the use case diagrams 

and the high-level functionality of the BMDS that needed to 

be realized.  The vision document will need to be modified 

as time passes to reflect a more refined vision of what the 

system should be and continuously referred to throughout 

the process of system development.  This will ensure that 

the requirements of the system that have been identified in 

the use cases can be traced back to the vision document, 

providing an indication that the necessary features of the 

system are being addressed. 
                     

26 Dale Scott Caffall, “Conceptual Framework Approach for System-of-
Systems Software Developments” (M.S. Thesis, Naval Postgraduate School, 
Mar. 2003). 
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As the requirements of the BMDS are identified and 

documented, they will be refined into the Software 

Requirements Specification (SRS) package (Appendix C).  The 

fundamental differences between the SRS and the vision 

document is that the vision document is a broad-based 

description of the users’ needs, goals, objectives, and 

system features, whereas the SRS describes how these 

features are to be implemented and the external behaviors 

of the system in order to develop a solution to the 

software development problem.  The primary purpose of the 

SRS is to serve as a reference standard for the development 

team encompassing the functional and nonfunctional 

requirements and design constraints of the system 

controlling the project evolution through the input of the 

design, implementation, and testing groups.  As the vision 

document evolves, the SRS must reflect those changes and 

serve as a traceability reference point for verification 

and validation testing to ensure that the developed system 

is meeting the established requirements. 
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C. DESCRIPTION OF BMDS ARCHITECTURE27 

 

 
Figure 6.   Distributed C2BMC Architecture. 

 

A distributed system is defined as: 

…one in which hardware or software 
components located at networked computers 
communicate and coordinate their actions only by 
passing messages…Computers that are connected by 
a network may be spatially separated by any 
distance.  They may be on separate continents, in 
the same building or in the same room…distributed 

                     
27 James Bret Michael, Phillip Pace, Man-Tak Shing, Murali Tummala 

and others, eds., Test and Evaluation of the Ballistic Missile Defense 
System  FY 03 Progress Report, Naval Postgraduate School, Sept. 2003. 
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systems has the following significant 
consequences: concurrency; no global clock; 
independent failures.  The motivation for 
constructing and using distributed systems stems 
from a desire to share resources.28 

 
The complexity, size, and the need for concurrency of 

a global BMDS necessitates that it be developed as a 

distributed system.  In order to achieve the end goal of 

developing a distributed system-of-systems we envision the 

BMDS as depicted in the high-level distributed architecture 

as shown in Figure 6. 

The overarching BMDS will consist of a loosely coupled 

set of regional C2BMC systems; geographically separated 

networks interconnected much like the Internet.  The intent 

is to allow all participants to pull the information from 

specific areas of responsibility (AOR) as desired, but also 

to ensure that time-critical information can be pushed to 

those geographically collocated units that need it to 

effect destruction of a threat ballistic missile or to 

hand-off the information to non-geographically collocated 

units as a missile transits from one region to another.  

Note that the various sensors and weapons may be connected 

to more than one regional C2BMC system via proxy.  The 

advantage is that geographic location is a “don’t care” in 

that context. 

The real-time nature of the battle requires that all 

sensor information be local to fight the battle.  As the 

missile continues in its flight, the real-time battle 

management, together with some of the sensors and weapons, 

will handover to another regional C2BMC system.  The use of 

                     
28 George Coulouris, Jean Dollimore, and Tim Kindberg, Distributed 

Systems Concepts and Designs, Addison-Wesley, New York, 2001, p 2. 
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the Broker pattern will ease the handover of the assets 

from one region to another.29 

By distributing the C2BMC in this manner, information 

regarding any ballistic missile threat is available and 

accessible to all participants as desired, but will not 

overburden the network by having all the information 

presented to all units all the time; this will provide 

increased availability of data; more localized control, and 

improved response times of the units to counter the threat.  

Thus, units subscribe to the network with their addresses 

being available in routing tables with knowledge of the 

geographic location of the unit so that only data and 

information relevant to a particular unit (or region) is 

forwarded to that unit (or region).  For example, fire-

control data from another theater or region may not be 

useful and hence will stay local, while threat information 

from other theaters or regions may provide valuable 

situational awareness and therefore it can be made 

available to other regions.  Each regional BMC2 system 

consists of three major sub-systems: a Sensor Net, a 

Weapons Net and a BMC2. 

Sensor Net refers to a distributed system that 

provides the sharing of track data among Sensor Fusion 

Processors, Weapons Net, Weapon Platforms and the BMC2.  It 

supports a distributed track data-bidding process through 

which the Sensor Fusion Processors collaboratively perform 

track correlation along with fusion to improve the quality 

of the integrated air picture.  It also allows the 

broadcasting of cueing messages among Competent Authorities 

and the Sensor Controlling Authority. 
                     

29 F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, 
Pattern-Oriented Software Architecture: A System of Patterns.  Wiley & 
Sons, New York, 1996. 
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Weapons Net refers to a distributed system for target 

bidding.  It manages a list of targets waiting to be 

engaged by the Ballistic Missile Defense System, and 

coordinates cooperative weapons assignments (i.e., the 

pairing of appropriate weapons with targets) based on the 

bids (i.e., figure of merits that are based on many factors 

such as the defended area, predicted impact point, threat 

type, health and status of weapons, current engagements) 

submitted by individual weapons platforms, and policies, 

rules of engagement and manual overrides from the battle 

manager. 

BMC2 refers to the automation for supporting the BMC2 

functions.  It provides the interface for battle managers 

to create, modify, or delete the prioritized target list, 

set the initial weapons authorizations and other rules of 

engagement, and to monitor the engagement to its conclusion 

given that it may have to reassign the track to another 

weapon. 

The regional BMC2 will be supported by three 

integrated sub-networks: a Sensor Net, a Weapons Net, and a 

Command and Control (C2) Net emulating a geographical 

intranet.  The primary justification for the division along 

functional lines is that the data, in its entirety, flowing 

across each network may not be relevant to the others.  For 

instance, the specific radar parametric data derived from 

the Sensors is critical for use in the Weapons Net but is 

not necessary for C2; only the particular missile-track 

information (e.g., a Link-16 track) is pertinent.  

Conversely, intelligence information, such as electronic 

intelligence (ELINT) or human intelligence (HUMINT) 

regarding the possible numbers, location or movement of 

missiles that is critical for C2 planning is generally not 
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critical for the actual employment of a weapon system or to 

conduct sensor tracking.  Therefore, the data that is 

critical for each network will be determined and made 

available, but information that is not critical for the 

functional area will not be provided, thus preventing 

excessive overload on that particular network that doesn’t 

require the data. 

At the Sensor and Weapons Net, the message format will 

need to be binary and in a standardized format to reduce 

overhead and time latency, and ensure time-critical data is 

made available to the participating units that need it.  

The C2 network, by necessity, will consist of more than 

just track data to include, United States Message Text 

Format (USMTF) messages, intelligence data, etc.  Current 

C2 systems incorporate middleware such as XML or CORBA in 

order to integrate legacy sensor and weapons systems to 

keep the implementation independent of the platform.  It is 

our desire to move away from this scheme. 

The BMC2 System will need to consist of various 

communication mediums in order to connect the various 

participants operating with heterogeneous communications 

suites.  Currently, MDA is considering fiber-optic cable 

for the terrestrial elements of the network and will allow 

large throughput of data.  However for the air-, sea-, and 

space-based elements the only possible means for data 

transmission is by RF energy.  For space-based systems, 

UHF, EHF, or SHF can be utilized and the obvious choice 

would be the higher frequencies for greater data 

throughput.  Ground-, and sea-based units can also utilize 

these frequency ranges. However, due to the higher 

frequencies requiring large antenna sizes, only the larger 

combatants ships will be able to participate at the EHF/SHF 
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level.  For air-based units, the only viable choice 

currently for data transmission is in the UHF frequency 

band.  This is driven by the need for smaller antenna sizes 

and only UHF has a high enough data throughput to be 

effective.  The bottom line is whatever platform the 

servers reside on, they will need to be capable of 

transmitting and receiving data from all sources. 

As mentioned previously, each of the nets are divided 

along functional lines and will consist of the data 

necessary to conduct their primary mission.  The C2 Net 

will be interfaced with the Sensor and Weapons Net to 

provide C2 functionality for the direction and employment 

of each of these systems.  The sensors will be cued by 

command inputs from the Sensor Net via the C2 Net and track 

data will be received for distribution to higher and 

adjacent command elements interfaced within the C2 Net and 

BMC2 system.  Weapons systems assignment shall be directed 

for employment based on the tracking-data inputs from the 

Sensor Net, weapons availability from the Weapons Net, and 

the previously mentioned aspects of the weapons tasking 

logic.  The C2 Net will be interfaced with higher and 

adjacent commands in the BMC2 system for coordination and 

information exchange, such as the hand-off of tracks. 

The Weapons Net will encompass all participating 

weapons systems.  A bidding process shall occur for the 

employment of weapons on specifically designated targets 

provided by the Sensor Net.  The weapons bidding process 

will be the basis of weapons assignment, thus precluding 

expending multiple weapons from different weapons platforms 

on one target.  As envisioned, each weapons system will 

evaluate the tracks provided by the Sensor Net, determine a 

numerical value based on the trajectory of the missile and 
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its evaluation of the probability of kill, and then place a 

bid.  After a predefined amount of time, the bidding will 

be locked and a weapons assignment (i.e., the pairing of 

weapons and targets) will be made using a three-phase 

commit protocol that is able to tolerate both site and 

communications failure, while minimizing the frequency of 

blocking below that of two-phase commit.30  Each weapon 

system will continue to evaluate the target in the 

eventuality that the weapon misses or does not completely 

destroy the target.  If the target is destroyed the process 

is complete, else the bidding process starts anew.  The 

battle manager continuously oversees the whole process, 

following each track through the entire engagement process. 

The Sensor Net consists of netting all of the 

available sensors for the detection of a ballistic missile 

in a regional BMC2 system.  Each sensor, as it develops a 

track on a ballistic missile, will transmit the track to a 

Sensor Fusion Processor.  The tracks that are developed and 

transmitted by the sensors will carry a timestamp along 

with the target’s parametric data so that the Sensor Fusion 

Processor will able to utilize the most current information 

with which to update the track.  At the Sensor Fusion 

Processor, the data from its local sensor sources will go 

through an initial discrimination scheme.  A track table 

will need to be maintained on each contact.  As each track 

report arrives, it will need to be correlated based both on 

an evaluation of the contact current positional status in 

relation to tracks from other sensors, and a comparison of 

its current position in relation to a calculated predictive 

parametric behavior.  This will ensure that the contact is 

                     
30 Philip Bernstein, Vassos Hadzilacos, and Nathan Goodman, 

Concurrency Control and Recovery in Database Systems, Addison-Wesley, 
1987, p 240. 
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valid and can be updated by the most current source, and 

validate that it is the actual missile and not a decoy, 

debris, or perhaps another missile in close proximity.  

Once the missile contact is validated, the Sensor Fusion 

Processor will develop a single track containing the 

pertinent target data and a unique identifier.  The fused 

track will be pushed onto the Sensor Net for utilization by 

all participating units. The pertinent parametric data will 

also be pushed to the Weapons Net for weapons system 

utilization and weapons bidding. The track data will be 

also pushed to the C2 Net for situational awareness and 

command and control decision-making. 

 
D. USE CASES 

A use case is defined as: 

A description of a set of sequences of actions, 
including variants that a system performs that 
yields an observable result of value to an actor… 
when used in the context of system development 
the Use Cases establish the desired behavior of 
the system for verifying and validating the 
system architecture. 31 

 
The use cases, in other words, identify who, what and 

how of system behavior through the interactions between a 

user and that system.32  Five use cases for the BMDS, each 

corresponding to a different phase of the kill chain, have 

been proposed.33  In our thesis, we refine those use cases 

to identify system requirements, behaviors, and timing 

                     
31 Grady Booch, Jim Rumbaugh, Ivar Jacobson, The UML Reference 

Manual, Addison Wesley 1999, p 488. 
32 Dean Leffingwell, Don Widrig, Managing Software Requirements, 

Addison-Wesley, 2000, p 235. 
33 Dale Scott Caffall, “Conceptual Framework Approach for System-of-

Systems Software Developments” (M.S. Thesis, Naval Postgraduate School, 
Mar. 2003). 
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constraints (Figure 7).  These use cases will become part 

of the SRS, and will need to be periodically refined.  This 

process will be complete when there are sufficient enough 

use cases that can describe all possible ways in which the 

system can function.  When this is achieved these Use Cases 

will then serve as the foundation for further design, 

implementation, and testing of the system. 

 
Figure 7.   High-Level BMDS Use Case 
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1. Use Case 1:  Detect Potential Threat Ballistic 

Missile. 
Context Diagram: 

 
Figure 8.   Use Case 1 Diagram 

 
Context of Use:  The goal of this use case is to 

detect possible threat ballistic missile and push the track 

data onto the Sensor Net. 

Level: User goal. 

Primary Actors:  Threat ballistic missile, Sensor Net, 

Sensor Fusion Processor, Sensors, Sensor Controlling 

Authority, Competent Authority. 

Stakeholders and Interests:  Regional Commanders, 

Higher Commanders.34 
                     

34 Higher Commanders is defined as all those commanders senior to and 
in the direct chain of command of the regional commander. 
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Preconditions:  Sensor is in search mode. 

Success Guarantee:  Sensor Fusion Processor develops a 

single-track file for the potential threat ballistic 

missile. 

Trigger:  Adversary launches threat ballistic missile. 

Main Success Scenario: 

Competent authority determines that a potential 

ballistic missile threat exists in a predetermined 

geographic region, and issues cueing command message to 

Sensor Controlling Authority via the Sensor Net to position 

sensors in such a way that will allow a potential threat 

ballistic missile event to be detected within the field of 

view of the sensors. 

Sensor Controlling Authority receives cue from Sensor 

Net and directs sensors towards potential threat. 

Individual sensor initiates Use Case 1.1 to develop a 

local track for the potential threat ballistic missile and 

transmit track files to the Sensor Fusion Processor. 

Sensor Fusion Processor receives one or more tracks 

and filters data from its associated sensors, and develops 

single-track file for the potential threat. 

Extensions: 

1a: If potential threat ballistic missile is not 

determined to exist in the area of interest then no cueing 

message will be issued. 

2a: If Sensor Controlling Authority receives no cue, 

the sensor will continue to conduct surveillance in its 

current region. 
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2b: If Sensor Controlling Authority receives cueing 

message but is unable to comply with the cueing message 

from the Competent Authority, a Non-Compliance Message 

shall be forwarded to the Competent Authority and the 

sensor will continue to conduct surveillance in its current 

region. 

3a: If none of the sensors generates a track file for 

the potential threat ballistic missile, then the process of 

detecting a threat ballistic missile fails. 

4a: If the sensor fusion processor received no track 

file from sensors, then the process of detecting a threat 

ballistic missile fails.  

Technical and Data Variations List:  None 
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2. Use Case 1.1:  Generate and Transmit a Local 

Track 
Context of Use:  The goal of this use case is to have 

a sensor generate a local track based on valid detection 

parameters of the sensor. 

Level:  Sub-use-case of Use Case 1. 

Primary Actors: Threat ballistic missile, Sensors, 

Sensor Net, Sensor Fusion Processor 

Stakeholders and Interests: Regional Commanders, 

Higher Commanders 

Preconditions:  A potential threat ballistic missile 

event to be detected within the field of view of the 

sensor. 

Success Guaranteed:  Sensor develops and transmits an 

active potential threat ballistic missile track to Sensor 

Fusion Processor 

Trigger: A potential threat ballistic missile event 

has occurred within the field of view of the sensor. 

Main Success Scenario: 

Sensor observes a potential threat ballistic missile 

event that meets or exceeds the sensor’s detection 

threshold within its field of view and develops a hit.35 

Sensor generates cueing message, providing precise 

location as to where the event is taking place and 

transmits it to Sensor Net. 

                     
35 “Develop a hit” is defined as a sensor signal that survives the 

sensors environmental and false detection processing. 
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Sensor starts tracking to develop and refine the hits 

into a singular, coherent track when the number of hits 

exceeds the track threshold. 

Sensor transmits the track data to the appropriate 

Sensor Fusion Processor. 

Extensions: 

1a: If data is not sufficient to pass screening, then 

the detection process fails.  Neither track nor cueing 

message are generated. The sensor will continue to monitor 

the environment. 

2a: If precise location is not attainable, the sensor 

will provide sufficient data to cue remote sensors to a 

general locale for surveillance. 

3a: If the sensor has detected an event but the number 

of detections does not exceed the track threshold, the 

process fails. No track will be generated. The sensor will 

continue to monitor the environment. 

Technical and Data Variation List: 

Track information shall include track-identification 

value, time stamp, track quality, geo-reference, missile 

identification, bearing, altitude, direction of travel, 

speed, and parametric sensor-data information. 
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3. Use Case 2:  Cooperatively Track and Classify 

Threat Ballistic Missiles 
Context Diagram: 

 
Figure 9.   Use Case 2 Diagram 

 
Context of Use:  The goal of this use case is to 

identify and type-classify the threat ballistic missile, 

develop fire-quality tracks for engagement solutions, and 

forward target-track list to Weapons Net. 

Primary Actors:  Sensor Net, Sensor Fusion Processors, 

Weapons Net, BMC2 

Stakeholders and Interests:  Regional Commanders, 

Higher Commanders 

Preconditions:  Sensor Fusion Processors, Sensor Net, 

and Weapons Net are all operational. 
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Success Guarantee:  BMC2 forwards target track list to 

the Weapons Net. 

Trigger:  Sensor Fusion Processors are tracking 

potential threat ballistic missile(s). 

Main Success Scenario: 

Individual Sensor Fusion Processor uses intelligence 

profiles of threat ballistic missile(s) to type-classify 

tracks.  

Individual Sensor Fusion Processor provides type-

classified track data to Sensor Net. 

Individual Sensor Fusion Processor compares the track 

data in the Sensor Net against its own developed and 

improved track data by fusing data obtained from other 

Sensor Fusion Processors with its own and adding cross-

references to those tracks in the Sensor Net. The Sensor 

Fusion Processor then forwards the improved track data to 

the Sensor Net. 

Situation Awareness Filters within the BMC2 monitor 

tracks in Sensor Net, and develop and forward cueing 

messages to neighboring Sensor Nets. 

The Target List Coordinator within the BMC2 develops 

one master target list and forwards it to Weapons Net. 

Extensions: 

1a: If all Sensor Fusion Processors determine that 

the track is not a threat, the process fails. 

1b: If a Sensor Fusion Processor fails to type-

classify a track, it will label it as “unknown.”  The BMC2, 

which monitors those tracks resident in Sensor Net, will 

attempt to re-classify the “unknown” track as “hostile,” 
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“friendly,” “neutral,” “assumed friend,” or “assumed 

hostile.” 

3a: If a Sensor Fusion Processor fails to produce 

improved track data then that data which is obtained from 

other Sensor Fusion Processors, it will stop sending its 

own track data (which will not result in better quality 

tracks) to the Sensor Net until such a time that it can 

produce better quality tracks than what exists on Sensor 

Net. 

3b: If the Sensor Fusion Processors fail to merge 

tracks, then multiple tracks for the same target will 

appear in the Sensor Net. 

4a: If Situation Awareness Filters fail to forward 

cueing messages to neighboring Sensor Nets, sensors in 

neighboring regions will continue to conduct surveillance 

in their current regions. 

5a:  If the BMC2 fails to develop a target list and 

forward information to Weapons Net, process fails. 

Technical and Data Variations List: 

Sensor Fusion Processors and BMC2s will have 

electronic access to intelligence profiles of threat 

ballistic missile. 

Fire-quality track information shall include position, 

velocity, covariance, sigma, missile type, impact point 

prediction (IPP), launch point estimate (LPE), and re-entry 

vehicle (RV) type. 
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4. Use Case 3:  Cooperative Weapons Assignment 
Context Diagram: 

 
Figure 10.   Use Case 3 Diagram 

 
Context of Use:  The goal of this use case is to 

assign targets to weapons via cooperative target bidding. 

Primary Actors:  Sensor Net, Weapons Net, Weapons 

Platform, BMC2 

Stakeholders and Interests:  Regional Commanders, 

Higher Commanders 

Preconditions:  Weapons Net is functional. 

Success Guarantee:  Weapon assignments are made.  

Trigger:  Weapons Net received a target list from the 

BMC2. 
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Main Success Scenario: 

Weapons Net creates “target bidding request” for each 

target on the target list and broadcasts the information to 

all Weapons Platforms in the region.  

Individual Weapons Platform examines the “target 

bidding request” data and the attached track data, matches 

its capabilities against the targets, formulates target 

bids and forwards them to the Weapons Net. 

Weapons Net closes the bidding process for each target 

when each target’s bidding time expires.  Throughout the 

process this data is forwarded to the BMC2, which uses a 

target-bidding algorithm to create a weapons assignment.  

The BMC2 creates a weapon assignment message and replies to 

the Weapons Net. 

The Weapons Net broadcasts the weapons assignment to 

all Weapons Platforms in the region. 

Extensions: 

1a: If Weapons Net fails to create target-bidding-

request information, then the process fails. 

3a: If a target does not receive a winning-weapon 

bid, Weapons Net will notify BMC2. 

4a: If Weapons Net does not receive any 

acknowledgment (positive or negative) from the BMC2 after a 

predefined approval-time window, the Weapons Net will 

assume that the weapon assignment is approved by default. 

Technical and Data Variations List: 

Target-bidding-request information will include the 

target-track identification, extrapolated track 

information, time window for bidding, and any restrictions 

on the type of weapons used against the target.  
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A target bid will include the weapon identification, 

the intended target-track identification, proposed time to 

commence engagement, estimated time to intercept the 

target, and probability of kill success. 

Weapons assignment information will include weapon and 

intended target identifications, estimated probability of 

kill, and earliest and latest time to time to commence 

engagement. 
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5. Use Case 4:  Engage Targets 
Context Diagram: 

 
Figure 11.   Use Case 4 Diagram 

 
Context of Use:  The goal of this use case is to 

engage threat ballistic missile. 

Primary Actors:  Sensor Net, Weapon Platform, Weapons, 

Interceptors 

Stakeholders and Interests:  Regional Commanders, 

Higher Commanders 

Preconditions:  Weapon Platforms and Weapons are 

functional. 

Success Guarantee:  Weapon successfully intercepts 

target. 
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Trigger:  Weapon is assigned to engage a target. 

Main Success Scenario: 

Weapon Platform contacts Sensor Net and receives track 

information to develop a firing solution for its weapon. 

Weapon Platform continues to update its firing 

solution using the track information from Sensor Net. 

Weapon activates its interceptor within the interval 

defined by the earliest and the latest time to commence 

engagement. 

Interceptor engages threat ballistic missile. 

Extensions: 

1a: If the assigned Weapon Platform fails to generate 

a firing solution, the Weapon Platform notifies Weapons Net 

and the target is re-bid. 

3a: If the Weapon Platform receives an order from the 

BMC2 to cancel the weapon engagement before the weapon 

activates its interceptor, it will stand down the weapon 

and send a compliance acknowledgment to the BMC2.  The BMC2 

advises Weapons Net of the change of mission. 

3b:  If the Weapon Platform receives an order from the 

BMC2 to cancel the weapon engagement after the weapon is 

outside of the control of the Weapon Platform, it will send 

negative acknowledgment to the BMC2.  

4a: If the interceptors fail to engage the threat 

ballistic missile, the process fails. 

Technical and Data Variations List: none 
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6. Use Case 5:  Assess Kill 
Context Diagram: 

 
Figure 12.   Use Case 5 Diagram 

 
Context of Use:  The goal of this use case is to 

determine the kill status of the threat ballistic missile. 

Primary Actors:  Sensor Net, Sensor Fusion Processors, 

Sensors, BMC2, threat ballistic missile 

Stakeholders and Interests:  Regional Commanders, 

Higher Commanders 

Preconditions:  Sensors, Sensor Fusion Processor and 

Sensor Net are all functional. 

Success Guarantee:  BMC2 determines that threat 

ballistic missile is destroyed and reports kill.  
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Trigger:  Weapon engaged target. 

Main Success Scenario: 

Sensor Fusion Processors continue to identify and 

type-classify the threat ballistic missile events as shown 

in use case no. 2. It applies feature recognition 

processes, discriminates objects in debris clouds, and 

compares tracked objects to intelligence profiles. 

BMC2’s Kill Assessment Unit monitors and compares 

tracking data from Sensor Net for evidence of destroyed 

targets, and issues immediate probability of kill. 

BMC2 determines that threat ballistic missile is 

negated and issues kill-assessment report. 

Extensions: 

1a: No Sensor Fusion Processor can discriminate 

objects. Organic weapon sensor searches debris cloud and 

discriminates objects and updates Sensor Net.  If organic 

weapon sensors are unable to provide an update, the process 

fails. 

2a: BMC2, based on data supplied by the Sensor Net, 

cannot determine with high enough probability that threat 

ballistic missile is negated. Sensor Net continues to carry 

track as active threat. 

Technical and Data Variations List: none 
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E. CLASS DIAGRAM 

Now we turn to refining the use cases into high-level 

abstract Class Diagram (Figure 13).  The new classes Sensor 

Fusion Processor, Sensor Net, and Weapons Net are realized 

and the necessary messages and data are identified and 

included.  The basic class framework and data-only 

interface strategy is retained to reduce coupling between 

components and realize the properties as defined in 

previous work.36 

 

F. SYSTEM SEQUENCE DIAGRAMS (SSD) 

In order to further identify and refine the 

requirements, behavior, and timing constraints of the 

system based on the developed use cases and BMDS 

architecture we will utilize System Sequence Diagrams 

(SSD).  The purpose of a SSD is to show the dynamic 

interaction of objects within a system by graphically 

depicting the time ordering of message passing among the 

objects.  For each of the use cases described earlier, an 

equivalent SSD is given and are described in detail in 

Appendix D. 

                     
36 Dale Scott Caffall, “Conceptual Framework Approach for System-of-

Systems Software Developments” (M.S. Thesis, Naval Postgraduate School, 
March 2003), p 37. 
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Figure 13.   BMDS Class Diagram (After Ref. Conceptual 

Framework Approach for Systems-of-Systems Software 
Development) 
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V. BMDS MODEL 

A. INTRODUCTION 

 
Figure 14.   The Miracle 

 

In deciding how to best transform from the abstract 

requirements to the concrete specification, we evaluated 

several technologies.  The Unified Modeling Language (UML), 

while providing an adequate platform for this subject, was 

found to be inadequate for complex systems with real-time 

constraints.  The Prototype System Description Language 

(PSDL), while a strong candidate for its ability to handle 

the real-time aspect of the project, we found to be not 

suitable for this particular task, as it is too fine 

grained and is only capable of modeling static systems (our 

models have dynamic modules).  Therefore, in our search for 

a rough-order modeling language, we selected UML-RT, the 
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real-time extension for UML as specified in Selic and 

Rumbaugh “Using UML for Modeling Complex Real Time 

Systems.”37 

In using UML-RT to model the specifics of the system, 

we followed a hierarchy plus input output process (HIPO)38 

approach.  We modeled all nine major components from the 

use cases (Sensor, Sensor Controlling Authority, Competent 

Authority, Sensor Fusion Processor, Sensor Net, Weapon 

Platform, BMC2, Weapon, and Weapon Net).  As our thesis 

focuses on the sensor portion of the Sensor-to-Shooter 

equation, only the Sensor Fusion Processor and Sensor Net 

are decomposed down to two levels of detail.  Their models 

include Interface Capsules on the first level of 

decomposition, which shows the point at which they 

interface with peer assemblages.  The second level of 

decomposition for these two components has Communications 

Capsules for communicating between capsules as opposed to 

components.  This helps further decompose the complexity of 

each component.  As the sensor portion of the use cases was 

our focus, the other six assemblages are not decomposed 

further and have implicit Interface Capsules, which are not 

explicitly shown on their first level of decomposition. 

All of these models are included in this thesis in 

Appendix E.  Please refer to Appendix E for a complete 

treatment of each model. 

UML-RT is hierarchical and, as such, is excellent for 

decomposing complex systems into less complex pieces.  If 

one examines Figure 6, an entity called SFP (Sensor Fusion 

Processor) can be found.   
                     

37 Bran Selic and Jim Rumbaugh, Using UML for Modeling Complex Real 
Time Systems, Apr. 1998. 

38 IBM Corporation, HIPO: A design Aid and Documentation Technique, 
1974. 
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Figure 6. 

Through use case analysis, we determine this entity to 

be necessary, and we determine which functions it should 

execute.  The model can then be broken down into 

subcapsules, five of them in this case.  Each of these 

subcapsules then is responsible for a piece of that 

functionality.  As one decomposes, each subcapsule is 

treated as a black box, with input and output.  Once each 

subcapsule is decomposed, however, the opaque blackbox 

becomes a transparent whitebox, where the processes are 

either described by state machines or subcapsules that can 

be further decomposed.  
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Figure 26 

Each of those five sub-capsules is then further 

decomposed into multiple sub-capsules in the following five 

figures.   

 

  

 

Figures 27 through 31. 

Each sub-capsule also contains sub-capsules, which can 

be further decomposed if desired eventually down to a state 
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machine.  This is the process we used to decompose a highly 

complex system into a moderately complex system, and which 

could be used to decompose it further into a simpler 

system. 

One more point on vocabulary; the sensor portion of 

the entire Sensor-to-Shooter equation is strictly concerned 

with tracks.  Anything which the sensors are tracking is a 

track.  The Sensor Net maintains a master track list for 

all affiliated Sensor Fusion Processors, Weapon Platforms, 

and the BMC2 to reference.  Tracks only become targets once 

the BMC2 designates them as targets by putting them on the 

master target list. 

This HIPO decomposition has proven to be very useful 

in determining where the major functions should be, as well 

as for describing the highest-level algorithms (or 

processes) of the system.  By breaking the system into 

capsules (smaller, less complex units) and sub capsules, 

with a few state machines, one begins to see where the most 

time-critical pieces of the system are and how they can be 

accommodated.  Finally, by following this process, one 

begins to see how an inherently complex system can be 

broken down into more understandable pieces. 

 
B. CONTEXT 

The context of the UML-RT model is based directly on 

the BMDS architecture (Figure 6) and is annotated as a sub-

graphic on each functional depiction shown with the dotted 

line on a box.  As decomposition occurs the graphics will 

display the higher level that invokes it. 
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C. ASSESSMENT 

We learned several things about the system by doing 

this decomposition. 

•Passing firing solution quality data to a weapon 

platform that has won a target bid is the highest priority 

task.  Therefore, it has been streamlined to ensure the 

fastest, best response possible. 

•We realize that it would be difficult for us to put 

real-time requirements on every aspect of the system.  As 

such, we modeled the passing of firing-solution-quality 

data to a weapon platform in a small number of capsules to 

help lower the complexity and, therefore, increase the 

capability of the system to be specified using hard-time 

requirements. 

•Cueing for potential targets is the second highest 

priority task.  Therefore it is also streamlined. 

•In deciding how to handle cues, it became obvious 

that, since potentially tens of platforms could be 

simultaneously sending cueing messages, all of them 

directly to the Sensor Net, we had to add into the model a 

simple XOR-style correlation capability. 

•It was our opinion that the master track list 

maintained by the Sensor Net should be the source to 

develop the ‘common operating picture’ used by all Sensor 

Fusion Processors.  Therefore, we modeled it as being 

pushed out to all SFPs, with each SFP maintaining a 

materialized view (i.e., maintaining a local copy and 

temporarily maintaining local differences from the master 

track list).  These local changes start out as pending 

updates submitted to the Sensor Net for incorporation, or 
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if rejected, then they become local data.  One example of 

local data is, if the SFP has a lesser quality track than 

that which is already on the master track list, it would 

hold its track until it beat the one listed on the master 

target list or until the track either disappeared or was 

determined to be a different track from any listed on the 

master track list. 

•At the time of completion of this thesis, there is 

still quite a debate out there on what constitutes ‘sensor 

fusion’.  Therefore, for the sake of consistency in this 

chapter and Appendix E, we provide the following 

definitions: 

•Track Correlation:  Comparing two tracks to determine 

if they are the same actual object or two different 

objects, resulting in one track being forwarded and the 

other being dropped. 

•Track Discrimination:  Filtering out objects that are 

not relevant (debris, chaff, decoys) in order to reduce the 

load on the system/network. 

•Track Fusing:  The act of taking a track and filling 

in any gaps in coverage by using a different track taken 

from a different sensor/perspective, or of taking a track 

taken from a different type of sensor and using it to 

enhance the base track, making the ellipse of certainty 

(the area where we think the missile is) smaller and more 

precise. 

•Track Abstraction:  The act of sampling a real-time 

track, making it less accurate but lighter in data load and 

therefore easier to pass, to give larger granularity 

situational awareness to peer Sensor Nets.  This is useful 

between Sensor Nets to broaden situational awareness beyond 
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one’s own local area.  It is also the method used to pass 

cues to Sensor Controlling Authorities. 
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VI. BMDS OMNET ++ SENSOR FUSION PROCESSOR (SFP) 
SIMULATION 

 
Figure 15.   OMNet++ BMDS SFP Simulation. 

 
In deciding on a simulation tool for modeling the 

Sensor Fusion Processor, we evaluated two well-known 

general-purpose simulation systems; MATLAB and OMNeT++.  We 

found that MATLAB is too fine grained of a simulator than 

is needed at this stage of development, and that OMNeT++ 

better fits our requirements for a coarse-grain level of 

modeling fidelity.  We developed a simulation based on the 

device which is least understood in the entire system -- 

the Sensor Fusion Processor (Figure 15) -- in order to 

further our understanding of how it would function within 

the context of the Ballistic Missile Defense System. 

The design for the simulation flowed naturally from 

the UML-RT model, which is included in the appendices of 

this thesis.  We found a one-to-one correspondence between 

our model and the OMNeT++ sub-modules, gates, and 

parameters. 
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The following are significant assumptions that we made 

while developing our simulation models of the BMDS: 

• Modules within the SFP are collocated (included 

parameter is Gig-E transmission speed between 

modules). 

• Message sizes are based on estimates of what data 

would be required from each device. 

• There are many proposed algorithms proposed for 

sensor fusion.  The inputs, outputs, and time 

delays represented in our simulation are 

representative of those algorithms.  These 

parameters can also be easily replaced with more 

specific parameters as needed. 

• Discrimination occurs at the individual sensor 

and is not explicitely part of the simulation, as 

the SFP is not designed to screen out debris, 

decoys, etc. 

 

Our input parameter values are derived from the 

following: 

• Number of Ground-Based Radar Sensors: Typical of 

a standard theater defense. 

• Number of Satellite-Based IR Sensors: Typical of 

the number of satellites involved in a standard 

theater defense. 

• Number of actual objects being tracked: 

Arbitrary, but based on typical world scenarios. 
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• Data Rate (bps) between SFP and Sensor Net: 

Default rate is based on CPT Joel Babbitt’s 3.5 

years of strategic communications experience. 

• Data Rate (bps) between Capsules: Based on 

Gigabit Ethernet. 

• Size (bits) of Fused Track: We based it on one of 

two assumptions, being that fusion only replaces 

pieces of a track rather than adding to it, or 

that a track increases in size when fused. 

• Data Rate (bps) between Radar Sensor and the SFP: 

Based on current telecommunications standards. 

• Size (bits) of an Unfused Radar Track: Based on 

existing military systems. 

• Delay (sec) between Radar Tracks sent to the SFP: 

Based on existing systems. 

• Data Rate (bps) between IR Sensor and the SFP: 

Based on distance from the earth, downlink 

frequency, and speed of light. 

• Delay (sec) between IR tracks being sent to the 

SFP:  Based on rough order parameters of current 

systems. 

• Size (bits) of an unfused IR track: Based on 

existing systems. 

• Delay (sec) between Master Track List broadcasts: 

Based on how often it would have to be done in 

order to ensure target accuracy and aid 

collaborative fusion. 

• Number of collaborative fusion requests from CFC: 

Arbitrary, but must be equal to or less than the 
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number of actual objects being tracked, as you 

cannot fuse more tracks than you actually have.  

• Time (sec) each Module takes to handle a track: 

Based on an estimate from a Professor Wen Su 

assuming level 3 Internet Protocol routing for 

each discreet message in the simulation and top 

of the line 2003 hardware and routing software. 

• Time (sec) to check a track against the List: 

Based on an estimate from Professor Wen Su 

assuming associative memory, data stores (as 

opposed to data bases), and the top of the line 

2003 hardware and memory management software. 

• Time (sec) required to perform a Fusing Action: 

Arbitrarily set, as this function is still not 

well defined by MDA. 

The parameters all have ranges and interdependencies 

discussed in the analysis of the results of the simulation 

done in Chapter VII of this thesis and more fully analyzed 

in Appendix G.  The data types for each parameter were set 

in the body of the simulation code.  All parameters, which 

take seconds, are doubles (thereby allowing milliseconds, 

microseconds, etc.).  All parameters, which take bits or 

bits per second, are integers (as there is no such thing as 

a ‘partial’ bit). 

As a caveat, we have not fully validated this model 

over the entire range of possible realistic values.  The 

user should establish the validity of the outputs generated 

by exercising the model over the range of values of 

interest. 

Knowing that there are many who may come after us, we 

designed this simulation to be extensible.  Parameters, 
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processes and algorithms are commented and explained in the 

body of the code (See Appendix F). 
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VII. DISCUSION OF RESULTS 

The most significant timing constraint placed on the 

BMDS is the need to destroy a threat ballistic missile 

before it exceeds the weapons-system capabilities for a 

successful intercept.  This assessment must be applied 

through each phase of flight of the threat ballistic 

missile for each type of weapon that it has the potential 

to engage.  For instance, the duration of the boost phase 

is between one to four minutes depending on the type of 

missile.  In this case, we say that the threat missile is 

an ICBM that will accelerate to Mach 9 (though not until 

exoatmospheric) and will be in the boost phase for the 

entire four minutes and that the interceptor, which will 

accelerate to Mach 4 (at a much faster rate then the ICBM) 

can conduct the intercept within this phase but not beyond 

into the exoatmospheric region.  This means that the entire 

kill chain of events leading to destruction, and the 

messaging between the BMDS objects as depicted in the SSD, 

must occur within this timeframe or else the intercept will 

not be physically realizable. 

Working the problem from the projected point and time 

of expected intercept, the HTK missile must be “off the 

rail” with a sufficient amount of time to track and hit the 

target.  Therefore, the time of flight necessary for the 

interceptor must be subtracted from the total time 

available.  If the interceptor requires (at maximum range) 

one minute to intercept the ICBM, then the latest possible 

time that the interceptor can be launched is at three 

minutes from the time of the ICBM launch.  If there is 

weather precluding observation by space-based IR sensors or 

physical obstructions to GBR’s such as mountainous terrain, 
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the time for initial detection is increased and overall 

reaction time is decreased.  In the case of weather 

obscuration, detection could be delayed for up to one 

minute until the threat missile penetrates and is above the 

cloud layer for IR sensor detection; this would require the 

BMDS to conduct all of the required tasks within two rather 

than three minutes.  Therefore, the BMDS must be able to 

detect, track, assign, and engage the ICBM, and perform all 

the necessary communications within that same timeframe. 

Looking at the kill chain from initial detection, the 

time it takes a sensor to receive enough hits to develop a 

track and forward that track out to a SFP will vary based 

on the distance of the target from the sensor, the update 

rate and number of hits required to develop a track for 

each specific sensor.  The time necessary to transmit a 

signal and receive a contact hit from a target is twice the 

distance divided by the speed of light.  The general 

function for developing a solid track is based on applying 

a fast Fourier transform (FFT) algorithm, the calculations 

of which are on the order of n log n, where n is the number 

of sampled values in a particular range bin.39 

Once a track is developed it must be compared against 

a database of tracks local to the sensor to either update 

an existing track or develop a new track.  Tracking the 

target and applying gates have a time complexity on the 

order of nm log nm, where n is the number of established 

trajectories and m is the number of measured values of 

targets that n can be mapped to.40  All of the calculations 

can be conducted in a timely manner and are within the 

                     
39 Jane Liu, Real Time Systems, Prentice Hall, Upper Saddle River, 

N.J., 2000, p. 16. 
40 Ibid, p. 19. 
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realm of high-speed processors and are further enhanced by 

electronically steered phased-array radars. 

Once the track has been modified it must then be 

transmitted to a SFP for further processing.  Our 

simulation model incorporates an update rate of 0.5 seconds 

for an active sensor.  This number was selected based on 

the fact that we have abstracted out the specific type of 

sensor.  Passive sensors are typically updated at a lower 

rate based on the need to observe the target longer, 

requiring more hits to develop a track as opposed to active 

sensors.  This is the case with space-based IR satellites, 

because both the detection distances are greater and there 

is a requirement to sample more hits in order to refine a 

passive track; our simulation model uses a delay of two 

seconds to model the initial track development and 

transmission. 

Distance, with regards to communication, will also 

come into play as a significant factor affecting timing.  

Satellites in geosynchronous orbit require a minimum of one 

thirteenth of a second for a transmitted signal to travel 

between the satellite and the earth receiving station; this 

is just a rough estimate based on the distance divided by 

the speed of light and does not take into consideration the 

duration of the transmission nor the amount of information 

to be carried on the frequency.  Terrestrial units, while 

having greater bandwidth, must also traverse long 

distances, in some cases up to half the circumference of 

the Earth.  Sea-based units potentially will experience the 

greatest time delay with communications.  In contrast to 

line-of-sight communications, Naval surface combatants rely 

on satellite-based communication; such communication 

requires multiple paths and transmissions to participate in 

the BMDS. 
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After a track is developed locally, it is sent to a 

SFP to be further processed by fusing multiple sensor 

tracks into a single track for distribution to other units.  

These tracks will be arriving at an asymmetric rate based 

on the update and transmission of each of the different 

sensors.  Discrimination, filter, and fusing algorithms 

processed by the SFP are applied to all received tracks.  

The timing requirements imposed by these algorithms cannot 

be assessed as the algorithms are to be developed. 

The summation of all the delays in transmitting and 

receiving data must be incorporated within the simulation 

to provide a realistic representation of timing within the 

system. 

When looking at the BMDS and the messaging that must 

occur, as depicted in the SSD’s, there are multiple 

instances where potential bottlenecks could occur. 

The potential is first identified at the SFP with 

numerous sensors providing track data at asymmetric rates.  

The SFP must discriminate, filter, and fuse the current 

track data into a single track and forward that track out 

to the Sensor Net.  The SFP must also compare that track 

with a track database to determine if it is to be used to 

update an existing track or develop a new track.  

Additionally, developing a rough track classification 

requires a table look up, data comparison, and association 

based on known parametric data. 

The Sensor Net, once it receives the tracks, 

distributes them to participating BMC2 elements, which must 

then evaluate and determine which tracks warrant 

classification as threat ballistic missiles, developing a 

master target list to prioritize those targets based on 

Impact Predicted Points (IPP), priority defended areas, 

Rules of Engagement (ROE), etc., and forwarding that list 
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to weapons-capable platforms to evaluate their capability 

against the threat.  This process consumes time that must 

be accounted for within the total available time to conduct 

a successful intercept. 

A parametric (i.e., sensitivity) analysis involving 

numerous simulation runs was conducted to determine what 

were the most significant timing constraints on the system 

and at what point they became critical, which are annotated 

in Appendix G with both data tables and line graphs.  A 

methodical approach was utilized in the process of 

obtaining data where one input value was varied and the 

others remained constant to see how that one variable 

impacted the system.  For data input values, we utilized 

commercial data-transmission rates and approximate system 

clock-speed values for internal timing.  In doing so we 

abstracted the data points and precluded any implication of 

existing or developmental systems, while still obtaining 

valid research data. 

The most significant timing issue that was obtained 

through multiple iterations of the simulation was that as 

the track load increased, whether it was from large numbers 

of tracks being reported, moderate numbers of tracks being 

reported by large numbers of sensors, or when the sensors 

increased their update rates, the Track List Capsule would 

become saturated, thus increasing the time to transmit 

track data.  This is evidenced by corresponding increases 

of both the TLC percent utilization and average time to 

broadcast tracks on the Sensor Net with an increase in the 

number of tracks reported or sensors updating. 

We observed that track message size and data 

throughput rates had little impact on the time to transmit 

track data.  Additionally, as the number of track 

collaboration requests increased, the number of normal 
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tracks dropped to zero and collaboratively fused tracks 

increased, but there was no real impact to the overall 

average track-process time.  As to be expected, increases 

in module-processing time, track-list-comparison times, and 

track-fusion times all had corresponding increases to the 

average track processing and throughput values. 

Having now finished one full pass through the Use 

Case-Model-Simulation cycle, we found that the Use Cases 

feed directly into the UML-RT models, which in turn flow 

directly into the OMNeT++ simulation.  In addition, issues 

that arise in building, running, and analyzing the 

simulation and simulation outputs provide direct feedback 

on the validity of the model, which in turn provides direct 

feedback to the validity of the use cases themselves. 

Following this feedback loop ourselves, we found it 

necessary to redesign the SFP’s Track List Capsule in order 

to handle heavier work loads, in this case more traffic, as 

shown in Figure 16.  Based on the results of the simulation 

with the redesigned Track List Capsule included, we 

conclude that the redesign is not sufficient, and that a 

redesign of the SFP as a whole, which would probably place 

a slave TLC off of the master TLC local to each of the 

fusing capsules, would be required to reduce the load on 

the Track List Capsule and prevent the system from 

bottlenecking there. 
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Figure 16.   SFP Track List Capsule Redesign 
 
As a redefinition of this capsule’s sub-capsules, we 

specified the changes listed below: 

• Track Registry Capsules (A and B):  Maintains the 

SFP’s master list of all perceived valid tracks as 

well as any additional tracks received from the Sensor 

Net, including any commands added to received tracks 

or commands pertaining to the locally maintained 

tracks.  Only Track Registry Capsule is active at a 

time.  The other is in a semi-active state, in which 

it is receiving all updates from the Track Correlation 

Capsule, but it is not being used by the Track 

Correlation Capsule to serve TFC/CFC correlation 

requests.  However, when it receives a newer copy of 

the master track list from the Track List Receiving 
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Capsule than that which is held by its active 

counterpart, it goes active and directs the other 

active capsule to go into semi-active mode. 

• Track List Receiving Capsule:  Receives the Track List 

sent out periodically from the (higher level) Sensor 

Net.  It sends the Track List to the semi-active Track 

Registry Capsule first, then, after the active becomes 

semi-active, it forwards the list to the newly semi-

active capsule. 
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VIII. CONCLUSION 

A. SUMMARY. 

In a field of study that is not well defined such as 

ballistic missile defense and which consists of systems of 

systems, one must discover and develop methodologies for 

refining requirements and ensuring a project’s purpose is 

successfully accomplished.  The Use Case-Model-Simulation 

feedback cycle that we used is a systematic engineering 

methodology for developing such highly complex systems of 

systems. 

Through the use of this methodology, we were able to 

establish a feedback cycle.  Using this cycle, we were able 

to find weak points in the Sensor Fusion Processor, which 

we then redesigned and validated through simulation.  This 

type of feedback or refinement loop is key to ensuring 

success in distributed software development in a Software 

Engineering Environment (SEE). 
B. RECOMMENDATIONS. 

There are several areas of future study, some of which 

are listed here: 

• Validation of the model, to include running test 

cases for likely scenarios. 

• Expanding or enlarging the model by representing 

the rest of the Ballistic Missile Defense System. 

• Inclusion of specific algorithms and 

specification of interfaces for future inclusion 

of algorithms. 

• Integrating this methodology with a SEE tool such 

as Rational UDX. 

• Documenting requirements traceability and 

analysis which follows the requirements from Use 
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Cases to the model and finally to the simulation 

artifacts. 

• Application and enhancement of MDA’s simulation 

models which collectively form the BMDS Core 

Model set, focusing primarily on the BMD System 

Level M&S (Modeling and Simulation).41 

                     
41  Kevin J. Greaney, “Evolving A Simulation Model Product Line 

Software Architecture From Heterogeneous Model Representations” (Ph.D. 
dissertation, Naval Postgraduate School, Sept. 2003), p. 224. 
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APPENDIX A. GLOSSARY 

ABL.  1. Airborne Laser. 2. Aircraft Based Laser. 
ABM.  Anti-Ballistic Missile. 
ABM Treaty.  Anti-Ballistic Missile Treaty of 1972, signed 
and ratified by the (former) Soviet Union and the United 
States, limiting deployment on each side to one site 
comprising 100 interceptors, 100 launchers, and several 
ground-based radars.  The Treaty also regulates development 
and testing. In December 2001, President George W. Bush 
announced that the United States would withdraw from the 
treaty, which the U.S. did in June 2002 
Acquire.  1. When applied to acquisition radars, to detect 
the presence and location of a target in sufficient detail 
to permit identification.  2. When applied to tracking 
radars, to position radar beam so that a target is in that 
beam to permit the effective employment of weapons.  
Acquisition (ACQ).  (Sensor) The results of processing 
sensor measurements to produce object reports of interest 
to the system. 
Active.  In surveillance, an adjective applied to actions 
or equipment, which emit energy capable of being detected, 
e.g., radar is an active sensor. 
Active Defense (TBMD).  Active defense protects against 
theater missiles by destroying them in flight.  Engagement 
capability is required throughout all phases of the 
missile’s trajectory (boost, post-boost, mid-course, and 
terminal) to prevent saturation of point defense, to negate 
warhead effects, and to ensure minimal leakage in defending 
critical assets. Therefore, active defenses must consist of 
defense in depth to provide multiple engagement 
opportunities with differing technologies, increasing the 
probability of kill, and countering the enemy’s counter-
measure efforts.  Active defenses could consist of space-, 
air-, ground-, and sea-based systems.  If a strategic 
ballistic missile defense system is deployed, the active 
TMD should be supported by, but not limited by, those 
systems to increase the defense in the theater of 
operations. Active defense is considered one of the four 
pillars of TMD capability. 
Active Homing Guidance.  Guidance system in which both the 
source for illuminating the target, and the receiver for 
detecting the illuminating energy reflected from the target 
is carried within the missile. 
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Active Sensor.  One that illuminates a target, producing 
return secondary radiation, which is then detected to track 
and/or identify the target. An example is radar. 
AEGIS.  A totally integrated shipboard weapon system that 
combines computers, radars, and missiles to provide a 
defense umbrella for surface shipping.  The system is 
capable of automatically detecting, tracking, and 
destroying air-borne, sea-borne, and land-launched weapons. 
AEGIS BMD.  Aegis Ballistic Missile Defense (Aegis BMD) 
Project is an element of the Ballistic Missile Defense 
System, and is being developed to provide a rapidly 
deployable, highly mobile defensive system capability 
against short-to-intermediate range ballistic missile 
attacks on population centers, debarkation ports, coastal 
airports, amphibious objective areas, expeditionary forces, 
troops, friends, and allies.  Forward positioning of the 
ship makes possible a missile defense that will protect 
vast areas, often-entire countries. The Aegis BMD element 
of the BMDS builds on the proven Mark 7 Aegis Weapon System 
including modifications to the Standard Missile, and the 
Mark 41 Guided Missile Launch System. 
AEW.  Airborne Early Warning. 
Ballistic Missile (BM).  A rocket-propelled vehicle moving 
under its own momentum and the force of gravity that does 
not rely upon aerodynamic surfaces to produce lift and 
consequently follows a ballistic trajectory when thrust is 
terminated. 
Ballistic Missile Defense (BMD).  All active and passive 
measures designed to detect, identify, track, and defeat 
attacking ballistic missiles (and entities), in both 
strategic and theater tactical roles, during any portion of 
their flight trajectory (boost, post-boost, midcourse, or 
terminal) or to nullify or reduce the effectiveness of such 
an attack. 
Ballistic Missile Defense System (BMDS).  1. An integrated 
system of all BMD sensor and weapon systems. This system-
of-systems will provide greater capabilities to defend 
against ballistic missile attacks.  2. The aggregate BMD 
BMC3 and BMD forces that, in total, provide defense against 
ballistic missile attacks to North America and other areas 
of vital interest. 
Battle Management.  Battle management is composed of two 
parts, namely, strategies and the actual collection of 
tasks to be performed to successfully implement chosen 
strategies. Examples of strategies are: area defense, 
adaptive preferential defense, offense deployment, and 
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rules of engagement depending on the evolution of battle, 
etc. Examples of tasks are, resource allocation, target 
assignment, probability of kill calculations and kill 
assessment, etc. Given a set of strategies, resources and 
hostile asset deployment, battle management addresses the 
problem of choosing a strategy or set of strategies and 
performs the associated tasks that would result in the most 
“desired” outcome. 
Battle Management/Command and Control (BM/C2).  The BM/C2 
is the equipment, communications networks, and processes 
which the warfighting Combatant Commanders will use to 
monitor the theater ballistic missile fight and to direct 
the activities of the various BMDS elements. 
BMC2.  A set of computer workstations with software and 
communications gear providing full set of BMDS applications 
at a command center. 
BMDS Block.  The Missile Defense Agency (MDA) intends to 
field a set of software packages every two years.  These 
sets of software packages are called BMDS Blocks. 
BMDS Elements.  These are the systems that as a single 
entity provide BMDS capability. 
Boost Phase.  The first phase of a ballistic missile 
trajectory during which it is being powered by its engines.  
During this phase, which usually lasts 3 to 5 minutes for 
an ICBM, the missile reaches an altitude of about 200 km 
whereupon powered flight ends and the missile begins to 
dispense its reentry vehicles.  The other phases of missile 
flight, including midcourse and terminal, take up to the 
remainder of an ICBM’s flight time of 25 to 30 minutes. 
Boost Defense Segment (BDS).  The portion of the BMDS that 
defeats ballistic missiles in the period of flight prior to 
the termination of powered flight. 
Command.  Authorization required to perform command 
operations for command-oriented functions. 
Command, Control, Battle Management, and Communications 
(C2BMC).  An independent command and control capability 
from which ballistic missile defense operations can be 
implemented.  The C2BMC allows for full situational 
awareness and devolution of command (if necessary).  Each 
C2BMC Node will have the capability of planning, 
coordinating, directing, and controlling surveillance and 
engagement operations. 
Command, Control, Communications, Computers, and 
Intelligence (C4I).  Procedures and technologies supporting 
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command and control, communications, and intelligence 
requirements. 
Cooperative Engagement.  Engagement of a target through 
cooperative use of resources and/or data from more than 
just one participating unit. 
Cooperative Engagement Capability (CEC).  The capability to 
engage a target through cooperative use of resources and/or 
data from more than one participating sensor.  There are 
several forms of cooperative engagement, including 1. use 
of a composite track to launch a defensive weapon against a 
target, 2. fire control guidance of an interceptor using a 
composite track, and 3. near-real-time shift of interceptor 
control from one firing unit to another to improve overall 
defense system or architecture performance. 
Correlation.  The process of assigning or computing weights 
to determine that two or more tracks, consisting of smooth 
state estimates and representation of the uncertainty of 
the estimates, are for the same object or that they are for 
separate objects, or the result of that process. 
Cued Operation.  The directing of one sensor based upon the 
data received from another sensor. 
Cueing Command.  The command within a tactic, which 
specifies the sensor element’s coverage volume. 
Cueing Data.  Cueing data is a subset of object tracks 
within a sensor element’s coverage volume. 
Data Fusion.  Multilevel, multifaceted process dealing with 
automatic detection, association, correlation, 
discrimination, situation awareness, and threat assessment 
by combining data and information from single and multiple 
sources. 
Data Link.  1. Means of connecting one location to another 
to transmit and receive data.  2. Particular path between 
two nodes over which data are transmitted. It includes 
transmission medium and digital-to-analog converters, 
modems, transmission equipment, antennas, etc., associated 
with this path. 
Defended Asset List (DAL).  A ranked listing of facilities, 
forces, and national political items that require 
protection from attack or hostile surveillance.  The list 
is compiled from Federal departments and agencies, Unified 
and Specified Commands, and the Armed Services to ensure 
National Security Emergency Preparedness functions. 
Defense Support Program (DSP).  System of satellites in 
geo-stationary orbits, fixed and mobile ground processing 



97 

stations, one multi-purpose facility, and a ground 
communications network. Primary mission is to provide 
tactical warning and limited attack assessment of a 
ballistic missile attack. 
Detection.  Discrimination of an object from its background 
and its assignment to the class of potentially interesting 
objects. 
Distributed Bidding.  A distributed and automated process 
that (1) implements rule sets to assign and communicate 
among participants the weights or scores (i.e., the bid) of 
a system/platform’s ability to conduct an engagement or 
perform some discrete sensor support activity and (2) 
recommends the weapon system(s) or sensor(s) to execute the 
engagement or perform the discrete sensor support activity 
based on the distributed bids. 
Early Warning.  (1) Early detection of an enemy ballistic 
missile launch, usually by means of surveillance satellites 
and long range radar.  (2) Early notification of the launch 
or approach of unknown weapons or weapon carriers. 
Endo-atmospheric.  Within the earth’s atmosphere. The 
altitude commonly used to separate the endo- and exo-
atmospheric regimes varies from 100 km to 120 km. 
Engage.  In air or missile defense, a fire control order 
used to direct or authorize units and/or weapon systems to 
fire on a designated target 
Engage On Remote (EOR).  An advanced engagement operation 
where track data from external sensor(s), in the absence of 
local sensor data, are passed to the fire control component 
of a weapon system which uses these data to calculate 
launch parameters, fire the interceptor, and provide in-
flight target updates to the interceptor. The local weapon 
command center retains control and responsibility for the 
engagement. 
Exo-atmospheric.  Above the atmosphere where the drag is 
negligible.  The altitude commonly used to separate the 
endo- and exo-atmospheric regimes varies from 100 km to 120 
km. 
External Sensor.  Sensor program external to Missile 
Defense Agency, e.g., national assets and service sensors. 
Family-Of-Systems.  A set or arrangement of independent 
systems that can be arranged or interconnected in various 
ways to provide different capabilities.  The mix of systems 
can be tailored to provide desired capabilities dependent 
on the situation 
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Field of View (FOV).  The angular measure of the volume of 
space within which the system can respond to the presence 
of a target. 
Fire-Control Quality Data.  The system-specific data 
required for a weapon system to compute a fire-control 
solution and conduct an engagement. 
Forward-Based Sensor.  Sensor deployed close to target 
launch point. 
Forward Pass.  The act of passing control and 
responsibility of an interceptor missile in flight from the 
launching command post to another command post.  Sensor 
and/or guidance information may be generated by the 
launcher or may originate elsewhere.  Interceptor tracking 
and in flight updates may continue to be performed by the 
launching unit, or from another guidance and control 
element, or a combination of the two. 
Fusion.  1. The combining of automatically correlated 
information with data that refines the information or 
presents it in an intuitive format.  Fused data in many 
cases will arrive later than real or near-real-time data.  
2. Once associated or correlated, the process of combining 
all sources of information to improve the quality of the 
knowledge of the object.  (e.g. a radar, an ECM intercept 
receiver, and a spotter all report on an object at location 
“X.”  In creating the track file on that object, all 
information is used to either improve the accuracy of 
location, or amplify on the nature of the object. 
Gateway.  1. A gateway in a communications network is a 
network node equipped for interfacing with another network 
that uses different protocols.  A gateway may contain 
devices such as protocol translators, impedance matching 
devices, rate converters, fault isolators, or signal 
translators as necessary to provide system 
interoperability.  It also requires that mutually 
acceptable administrative procedures be established between 
the two networks.  A protocol translation/mapping gateway 
interconnects networks with different network protocol 
technologies by performing the required protocol 
conversions.  2. A generic term for a C4I network node 
designed to provide interoperability by interfacing between 
two (or more) systems or networks that use different 
protocols.  There are two types of gateways: (a) data 
forwarders between two or more tactical data links (TDLs), 
or between a TDL and a non-TDL system, and (b) routers and 
retransmitters (previously referred to as “cross-banding”).  
All gateways require the establishment of mutually 
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acceptable procedures for interfacing between the connected 
systems or networks. 
Geo-stationary Orbit (GSO).  An orbit 35,784 km above the 
equator. A satellite placed in such an orbit revolves 
around the earth once per day, maintaining the same 
position relative to the surface of the earth.  It appears 
to be stationary, and is useful as a communications relay 
or as a surveillance post. 
Global Positioning System (GPS).  The Navstar Global 
Positioning System is a space-based radio navigation 
network providing precise positioning needs of all military 
Services. When fully operational, 18 satellites are in 6 
orbital planes with an orbit period of 12 hours at 10,900 
nautical miles altitude.  Each satellite transmits three L-
band pseudorandom noise-coded signals, one S-band, and one 
ultra high frequency for spacecraft-to-spacecraft data 
relay. 
Gridlock.  1. The process of removing navigational and 
radar biases by calibrating to a common force reference 
point. This is accomplished by all units of the force 
simultaneously recording the position of a commonly held 
target that has a specified relative position from the 
force center (or other reference point) at the same 
instant.  2. The computer process used to compare an 
individual ship's track data with remotely originated track 
data, and to determine the correction necessary to bring 
the tracks into alignment. 
Ground-Based Interceptor (GBI).  A kinetic energy 
exoatmospheric interceptor with long flyout range to 
provide, where possible, a multiple engagement capability 
for defense of the U.S. with a relatively small number of 
missile launch locations. It is designed to engage post-
boost vehicles and/or RVs in the midcourse phase of flight. 
Ground-Based Radar (GBR).  A task-able, modular, multi-
function, phased-array radar that provides surveillance, 
tracking and engagement planning data in post-boost, 
midcourse, and terminal flight phases within its 
capabilities. It also provides target discrimination, in-
flight target updates (IFTUs), and target object maps 
(TOMs) to interceptor vehicles. 
Hand-Off.  The transfer of a track file from one sensor or 
system to another system in which the first does not 
continue to track. 
Handover.  1. The transfer of a track file from one sensor 
or system to another system in which the first sensor or 



100 

system continues to track the objects. 2.  The successful 
acquisition of a target using data from the cue. 
High Earth Orbit (HEO).  An orbit about the earth at an 
altitude greater than 3,000 nautical miles (about 5,600 
kilometers). 
Hit.  Measurement from a passive sensor or return from an 
active sensor judged to be from an object, e.g., 
observation, contact report, return, signal detection, and 
threshold exceedance. 
Hit Assessment.  A process that examines the results of an 
engagement and determines if the target of interest was 
physically hit.  This term has specific meaning for “hit-
to-kill” types of engagements where there is no proximity 
effect and an impact is necessary to damage or destroy the 
target.  A “hit” is not a kill, but is a prerequisite for a 
kill with hit-to-kill intercepts. 
Hit To Kill (HTK).  See Kinetic Kill Vehicle 
Hostile Track.  The classification assigned to a track 
that, based upon established criteria, is determined to be 
an enemy threat. 
Identification (ID).  The process of determining that a 
tracked object is a friendly, neutral, hostile, or unknown 
object, or the result of that process. 
Impact Point Prediction (IPP).  Predicted point of impact 
on the earth’s surface of a reentry vehicle, usually 
specified in terms of circular error probable. Estimate 
includes perturbing effects of atmosphere and resultant 
uncertainties. 
Information Pull.  Transfer of information product(s) to 
information user(s) in response to a request by and in a 
time frame defined by the user or their applications. 
Information Push.  1. Transfer of information product(s) to 
information user(s) in response to profile(s) submitted 
(typically by the commander’s staff) in anticipation of a 
group of information needs.  2. The process of creating a 
user profile of information requirements for continuous 
broadcast to an operating unit or supporting entity. 
Infrared (IR).  Electromagnetic radiations of wavelength 
between longest visible red (7,000 Angstroms or 7 × 10E-4 
millimeter) and about 1 millimeter. 
Initial Track.  The first track formed for an apparent 
target. 
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Intercontinental Ballistic Missile (ICBM).  A ballistic 
missile with a range capability from about 3,000 to 8,000 
nautical miles.  The term is used only for land-based 
systems to differentiate them from submarine launched 
ballistic missiles. 
Interoperability.  Ability of systems, units, or forces to 
provide services to or accept services from other systems, 
units, or forces and to use the services so exchanged to 
operate effectively together.  (2) Conditions achieved 
among communications-electronics systems or communications-
electronics equipment when information or services can be 
exchanged directly and satisfactorily between them and/or 
their users. 
Intermediate Range Ballistic Missile (IRBM).  A ballistic 
missile having a range capability of 1,500 to 3,000 
nautical miles. 
Joint Tactical Information Distribution System (JTIDS).  
Joint Service radio system that provides reliable, secure, 
jam-resistant, high-capacity integrated communications, 
navigation, and identification capability through the use 
of direct-sequence spread-spectrum, frequency-hopping, and 
error detection and correction techniques. One of two 
transmission devices currently approved to use Link-16 
message standards. 
J-Series Family of Tactical Data Links.  The family of data 
links based on common data elements, consisting primarily 
of the J-series messages and the communications protocols 
and hardware for Link 16 (TADIL J), Link 22, and VMF, as 
well as point-to-point, multi-point, and radios/satellite 
broadcast J-series data link capabilities developed in the 
future. 
Kill Assessment.  A process that, based on sensor data, 
examines in real time the results of an engagement and 
determines whether the warhead was broken open or not.  
Based on the outcome the battle manager would decide to or 
not to fire again at that target.  Kill assessment is 
different than lethality assessment or mission kill.  
Lethality assessment is a delayed response that may take 
many minutes or an hour or a day to discern from ground-
effects detectors and perhaps on-site visits to the missile 
wreckage. If the missile or warhead is knocked off course 
so that it won’t land in the defended area the engagement 
is called a “mission kill”.  The warhead might not be 
broken open in a mission kill. 
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Kinetic Energy Weapon (KEW).  Uses kinetic or motion energy 
to kill an object, e.g., rock, bullet, nonexplosively armed 
rocket, electromagnetic rail gun. 
Kinetic Kill Vehicle (KKV).  A weapon using a non-explosive 
projectile moving at very high speed to destroy a target on 
impact. The projectile may include homing sensors and on-
board rockets to improve its accuracy, or it may follow a 
preset trajectory (as with a shell launched from a gun). 
Laser.  An active electron device that converts input power 
into a very narrow, intense beam of coherent visible or 
infrared light; the input power excites the atoms of an 
optical resonator to a higher energy level, and the 
resonator forces the excited atoms to radiate in phase. 
Derived from Light Amplification by Stimulated Emission of 
Radiation and classified from Class I - Class IV according 
to its potential for causing damage to the eye. 
Laser Detection And Ranging (LADAR).  Technique analogous 
to radar that uses laser light rather than radio or 
microwaves. Light is bounced off target and then detected; 
return beam provides information on target distance and 
velocity. 
Launch Detection.  Initial indication by any one of a 
variety of sensors that a booster has been launched from 
some point on the surface of the earth, with initial 
characterization of the booster type. 
Launch On Remote.  Interceptor launch approach in which 
fire control data (measurements or state vectors and error 
covariance) of sufficient quality are provided by an 
external system and used by local fire control system to 
calculate fire control solution and launch interceptor 
before data can be provided by local sensor. Once launched, 
this concept assumes local sensor will take over from 
external sensor, and any in-flight updates to interceptor 
will be computed based on local sensor information. 
Launch Point Determination.  With computer methods, uses 
missile track observation to estimate point on earth’s 
surface from which missile was launched, expressed in terms 
of circular error probable. 
Layered Defense.  Sets of weapons that operate at different 
phases in ballistic missile trajectory; first layer of 
defense (i.e., boost phase) could pass remaining targets on 
to succeeding layers  
Link.  Transmission medium that can be wire, coaxial cable, 
optical fiber, or free space, as in radio systems. Allows 
any two subscribers in a network to exchange information 
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generated by one terminal device and received by another. 
Uplink and downlink refer to free space transmission from 
an earth station to a communications satellite and back 
Satellite-to-satellite relay is referred to as “crosslink.” 
LINK-11.  See TADIL A 
LINK-16 (formerly TADIL-J).  NATO designation for the US 
MIL-STD 6016, Tactical Digital Information Link (TADIL) J 
message standard and defined in STANAGs 5516 and 5616. U.S. 
Navy uses NATO designation; its use among all U.S. Joint 
Services when referring to TADIL J has become more common 
and recently became policy by JS/J-6 direction. MIL-STD-
6016 states that TADIL J and Link-16 are equivalent terms 
when applied to U.S. systems and platforms’ however, Link-
16 is preferred.  It is a secure, high capacity, jam-
resistant, node-less data link that uses the Joint Tactical 
Information Distribution System (JTIDS) transmission 
characteristics and the protocols, conventions, and fixed-
length message formats defined by the JTIDS Technical 
Interface Design Plan (TIDP). 
Local Track.  A track that is initiated and updated by a 
network participating sensor based on observations of the 
tracked object(s) by its local sensor(s) only. 
Long-Wavelength Infrared (LWIR).  Thermal radiation emitted 
by source in electromagnetic spectrum encompassing infrared 
wavelengths of 6 to 30 microns. 
Low Earth Orbit (LEO).  Satellites that are at altitudes 
between 100 and 400 nautical miles. They have short 
duration revolutions (about 90 minutes), short visibility 
envelopes (2.5 to 10 minutes over a tracking station), 
short life spans, and are most subject to orbital 
perturbations due to atmospheric drag and earth 
gravitational anomalies. 
LPP.  Launch Point Prediction 
Medium Wavelength Infrared (MWIR).  Thermal radiation 
emitted by a source in the electromagnetic spectrum 
encompassing infrared wavelengths of 3 to 6 microns. 
Message.  A message is information sent and received 
between an origin and a destination.  It has a specified 
number of bits possibly grouped into words, a definite 
beginning and a definite end, and obeys certain protocols 
or rules for the sender and receiver to establish channels 
and agree on various parameters for unambiguous 
communication.  Messages may be encoded, encrypted, and 
corresponding decoded and decrypted. 
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Mid-Course Defense Segment (MDS).  The portion of the BMDS 
that defeats ballistic missiles during the period of flight 
between boost and atmospheric reentry. 
Midcourse Guidance.  The guidance applied to a missile 
between termination of the boost phase and the start of the 
terminal phase of flight. 
Midcourse (MC) Phase.  That portion of a ballistic 
missile's trajectory between the boost phase and the 
reentry phase when reentry vehicles and penaids travel at 
ballistic trajectories above the atmosphere. During this 
phase, a missile releases its warheads and decoys and is no 
longer a single object, but rather a swarm of RVs and 
penaids falling freely along present trajectories in space. 
Missile Defense Agency (MDA).  This agency is tasked by the 
Secretary of Defense to develop and field the BMDS.  The 
Secretary of Defense directed that the change in names from 
the Ballistic Missile Defense Organization (BMDO) to MDA in 
a memorandum dated 02JAN02. 
Molniya Orbit.  This is a highly eccentric orbit with high 
apogee (.71 to .74) in the northern hemisphere and low 
perigee in the southern hemisphere. For a specific set of 
orbital parameters, this orbit has a changing velocity and 
altitude, which, when combined with the earth’s rotation, 
keeps the orbiting satellite within view for very long 
periods (96 percent) above a designated point on earth. 
Network.  An interlinked web of switching and transmission 
systems connected to subscriber communications terminals.  
A network includes all the hardware and software components 
residing in switching and transmission systems, as well as 
the communications-related hardware and software and 
components residing in hosts (e.g., communications 
protocols). 
Network Centric.  A term used to describe the widespread 
sharing of situation information without knowing in advance 
what value may be derived when that information is 
available for operational decisions.  Information may be 
shared by a combination of “push” (publish) and “pull” 
(subscribe) techniques.  The shared information is viewed 
as having no owner, but rather available to all with a 
need.  This sharing allows all war fighters to have the 
same understanding of the situation and view of the battle 
space, and facilitates Network Centric Warfare -- 
integrated operations and synchronization of actions.  In 
Network Centric Warfare the information to be shared is 
distinguished from command authority authorizing use of the 
information for combat operations (command and control).  
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The information shared, together with TTP, the command 
hierarchy, and commanders’ orders provide for Network 
Centric Operations. 
Network Centric Warfare (NCW).  An information superiority-
enabled concept of operations that generates increased 
combat power by networking sensors, decision makers, and 
shooters to achieve shared awareness, increased speed of 
command, higher tempo of operations, greater lethality, 
increased survivability, and a degree of self-
synchronization.  In essence, NCW translates information 
superiority into combat power by effectively linking 
knowledgeable entities in the battle space. 
Node.  A set of equipment and processes, which performs the 
communications functions at the end of the data links which 
interconnect those elements, which are resident on the 
network. 
Object.  A distinct entity with a definite spatial extent 
and whose different parts maintain their relative distances 
constant over a period of observation 
Observation Interval.  The time that elapses between 
successive observations of an object by one or more 
sensors. 
PAC-3.  PATRIOT Advanced Capability-3 
PADIL.  Patriot Data & Information Link. 
Passive.  In surveillance, an adjective applied to actions 
or equipment, which emit no energy capable of being 
detected. 
Passive Sensor.  Detects naturally occurring emissions from 
target for tracking and/or identification. 
Phased-Array Tracking Radar Intercept On Target (PATRIOT).  
Point or limited area defense system originally built to 
intercept aircraft. PAC-3 improvements, which will give it 
greater capability against theater ballistic missiles, 
include radar upgrades and selection of an improved 
missile, either PATRIOT multimode or ERINT. 
Post-Boost Phase (PBP).  That portion of the trajectory of 
a ballistic missile between the end of powered flight and 
release of the last RV. Applies only to multiple-warhead 
ballistic missiles. 
Post-Boost Vehicle (PBV).  The portion of a rocket payload 
that carries multiple warheads and which has the 
maneuvering capability to independently target each warhead 
on a final trajectory toward a target. Also referred to as 
a "bus." 
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Precision Decoys.  Decoys that precisely match RV 
characteristics either exo-atmospherically or endo-
atmospherically, or both, and seek to deceive the defense 
into intercepting them. 
Predicted Intercept Point (PIP).  The calculated position 
in space where the target and interceptor coincide. 
Probability of Detection (Pd).  The probability that an 
observation is generated from a frame of sensor data for an 
object that is within the field of view. 
Probability of Kill (Pk).  Describes the lethality of a 
weapon system. Generally refers to armaments (i.e. 
missiles, ordnance, etc.)  Usually the statistical 
probabilities that the weapon will detonate close enough to 
the target with enough power to disable the target 
Protocol.  Rules, such as open systems interconnection, 
that enable error-free computer connection and 
communication at a given layer or segment of a network 
architecture. Typically established by industry or 
international organizations such as the Institute of 
Electrical and Electronic Engineers (IEEE) or American 
National Standards Institute (ANSI). 
Radar.  (Formerly an acronym for Radio Detection and 
Ranging.) A technique for detecting targets in the 
atmosphere or in space by transmitting radio waves (e.g., 
microwaves) and sensing the waves reflected by objects. The 
reflected waves (called "returns" or "echoes") provide 
information on the distance to the target and the velocity 
of the target, and also may provide information about the 
shape of the target. 
Real Time.  Pertaining to the timeliness of data or 
information that has been delayed only by the time required 
for electronic communication.  This implies that there are 
no noticeable delays. 
Reentry.  The return of objects originally launched from 
earth, into the atmosphere. 
Reentry Phase.  That portion of the trajectory of a 
ballistic missile or space vehicle where there is a 
significant interaction of the vehicle and the earth’s 
atmosphere. 
Reentry Vehicle (RV).  1. A structure designed to return 
from exo-atmospheric flight through Earth’s atmosphere. 2. 
Reentry vehicles are objects containing nuclear, chemical, 
biological, or high explosive warheads.  They are released 
from the last stage of a booster rocket or from a post-
boost vehicle early in the ballistic trajectory.  They are 
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likely thermally insulated to survive rapid heating during 
reentry into the atmosphere. 
Remote Track.  A track that consists of data only from one 
or more non-organic sensors. 
Robust.  Used in describing a system; indicates its ability 
to endure and perform its mission against a responsive 
threat. Also used to indicate system ability to survive 
under direct attack. 
Robustness.  1. The ability to produce correct results 
despite input errors. 2. The existence of coordinated, 
multiple capabilities that perform the same broad 
task/mission. Provides the BMD warfighter with sufficient 
flexibility to negate the specified threat with application 
of a variable mix of ground and space-based systems. 
Rules Of Engagement (ROE).  Directives issued by competent 
military authority which delineate the circumstances and 
limitations under which United States forces will initiate 
and/or continue combat engagement with other forces 
encountered. 
SBIRS High.  SBIRS high altitude component consisting of 
four SBIRS GEO satellites and infrared sensors on two HEO 
satellites. 
SBIRS Low.  SBIRS low altitude component consisting of 
SBIRS LEO satellites. The SBIRS Low component will be 
designed to provide precision midcourse tracking and 
discrimination data to support early interceptor commit, 
in-flight target updates, and target object maps for a 
National Missile Defense architecture. The SBIRS Low 
component will also support the other mission areas of the 
SBIR system. 
Sensor.  A device that responds to a physical stimulus (as 
heat, light, sound, pressure, magnetism, or a particular 
motion) and transmits a resulting impulse (as for 
measurement or operating a control). 
Sensor Data.  Measurement information. For a passive sensor 
it is usually irradiance, time, azimuth angle and elevation 
angle. For an active sensor it may include range, Doppler, 
cross section, etc., as well. 
Sensor Fusion.  Combining data and information from 
multiple sensors, usually on different platforms.  
Processing for doing this for two passive sensors is 
sometimes called stereo fusion and for three passive 
sensors, triocular or triple fusion.  The term may also be 
applied to passive-active or active-active fusion as well. 



108 

Sensor Network.  1. All external and internal ballistic 
missile defense system sensors plus comms and sensor 
netting used to communicate sensor data to algorithms, 
processes, and people who use it.  2.  All ballistic 
missile defense system sensors, internal and external to 
Missile Defense Agency. 
Sensor Node.  Sensor-netting node collocated with sensor 
that provides target track and feature information to 
sensor netting network and receives sensor tasking 
information from it. 
Shoot-Look-Shoot (SLS).  A firing doctrine in which the 
result of the first intercept attempt is assessed prior to 
the launch of a subsequent interceptor.  This tactic 
requires the use of kill assessment by space or ground 
based sensors but can significantly reduce interceptor 
inventory requirements. 
Short-Range Ballistic Missile (SRBM).  A ballistic missile 
with a range capability of 30 km to 1,000 km. 
Short Wavelength Infrared (SWIR).  Thermal radiation 
emitted by a source in the electromagnetic spectrum 
encompassing infrared wavelengths of 0.75 to 3 microns. 
Shorting.  With regard to the Sensor Net, it is the action 
of sending tracks to the weapons platform at the same time 
that they are sent  through the TCC/TRC/TSC processing 
loop. 
Single Integrated Air Picture (SIAP).  1. The SIAP is the 
product of sensor fused, common, continual, unambiguous 
tracks of airborne objects in the surveillance area.  Each 
object in the SIAP has one, and only one, track number and 
set of associated characteristics.  The SIAP uses fused, 
near real-time and real-time data, scalable and filterable, 
to support situational awareness, battle management, and 
airborne target engagements. 2. The SIAP (the air track 
portion of the CTP) consists of common, continual, and 
unambiguous tracks of airborne objects of interest in the 
surveillance area.  SIAP is derived from real time and near 
real time data and consists of correlated air object tracks 
and associated information.  The SIAP uses fused near real 
time and real time data, scaleable and filterable, to 
support situation awareness, battle management, and target 
engagements. 3. The SIAP is the product of fused, common, 
continuous, unambiguous tracks of all airborne objects in 
the surveillance area.  Each object within the SIAP has 
one, and only one, track number and set of associated 
characteristics.  The SIAP is developed from near-real-time 
and real-time data, and is scaleable and filterable to 
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support situation awareness, battle management, and target 
engagements. 4. As in 3) above plus … The SIAP is a subset 
of the CTP, used by TAMD C2 and weapon control nodes to 
share track and fire-control data. 
Space Based Infrared System (SBIRS).  SBIRS will be a 
consolidated system that will meet United States infrared 
space surveillance needs through the next 2-3 decades. 
SBIRS is intended to be an integrated “system of systems” 
including multiple space constellations and an evolving 
ground element. The baseline SBIRS architecture consists of 
four Geosynchronous Earth Orbit (GEO) satellites; two 
sensors on Highly Elliptical Orbit (HEO) satellites; Low 
Earth Orbit (LEO) satellites; a ground system consisting of 
a CONUS-based Mission Control Station (MCS), a backup MCS, 
a survivable MCS, and oversees relay ground stations and 
re-locatable terminals; and associated communications 
links. The SBIRS is designed to meet the missile defense, 
missile warning technical intelligence, and battle space 
characterization mission requirements identified in the 
JROC-validated SBIRS Operational Requirements Document. The 
SBIRS program will begin replacing the operational Defense 
Support Program (DSP) ground segment in 1999 and begin 
replacing the DSP satellites in 2002. 
Space-Based Sensor.  A system that provides global above-
the-horizon surveillance to detect and track PBVs, object 
clusters (RVs and penaids), and resolved midcourse objects, 
as well as below-the-horizon tasked hot spot detection of 
boost phase missiles when cued by a space-based weapon or a 
priori knowledge. It provides surveillance data for use in 
situation assessment, operational intelligence collection, 
and for cueing other sensor and weapon elements. During 
midcourse, sensors discriminate and track RVs and 
associated objects to support midcourse engagements. 
Standard Missile.  A shipboard, surface-to-surface/air 
missile. 
Surveillance.  The systematic observation of an aerospace 
area by a sensor system primarily for the purpose of 
detecting an air vehicle, ballistic missile, or other 
aerospace object.  Some sensors that are referred to as 
surveillance sensors also track air vehicles, ballistic 
missiles, and other aerospace objects. 
System.  1. The organization of hardware, software, 
materials, facilities, personnel, data, and services needed 
to perform a designated function with specified results, 
such as the gathering of specified data, its processing, 
and delivery to users. 2. A combination of two or more 
interrelated equipment (sets) arranged in a functional 
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package to perform an operational function or to satisfy a 
requirement. 
System Architecture.  The structure and relationship among 
the components of a system. The system architecture may 
also include the system’s interface with its operational 
environment. A framework or structure that portrays 
relationships among all the elements of missile defense 
systems. 
System of Systems (SoS).  A set or arrangement of 
interdependent systems designed to be interconnected in 
various ways to provide capabilities beyond those systems 
operating autonomously.  Each component system is designed 
with a “fall back” capability to operate autonomously, but 
when operated as an interconnected set, their capabilities 
are enhanced.  The degree of interdependence can vary from 
loosely coupled (federated) to tightly coupled 
(integrated), but the capability of the set is always 
greater than the sum of the elements operated autonomously. 
Tactical Data Links.  Near-real-time tactical 
communications and information systems used primarily at 
the coordination and execution level. 
Tactical Digital Information Link (TADIL).  A Joint Staff 
approved, standardized communication link suitable for 
transmission of digital information.  Current practice is 
to characterize a tactical digital information link (TADIL) 
by its standardized message formats and transmission 
characteristics.  TADILs interface two or more command and 
control or weapons systems via a single or multiple network 
architecture and multiple communication media for exchange 
of tactical information. 
TADIL A.  A secure, half-duplex, netted digital data link 
utilizing parallel transmission frame characteristics and 
standard message formats at either 1364 or 2250 bits per 
second. It is normally operated in a roll-call mode under 
control of a net control station to exchange digital 
information among airborne, land-based, and shipboard 
systems. NATO’s equivalent is Link 11 
Target.  1. Same as defined for an object. 2. An object of 
interest rather than just any type of object. 
TBM.  Tactical/Threat Ballistic Missile 
TBMD.  Tactical/Theater Ballistic Missile Defense 
Theater Ballistic Missile Defense (TBMD) System. The 
aggregate TMD C3I and TBMD forces that, in total, provide 
defense against ballistic missile attacks within an 
overseas theater of operations. 
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THAAD.  Theater High Altitude Area Defense 
Terminal Phase.  That final portion of a ballistic 
missile's trajectory between the midcourse phase and 
trajectory termination. 
Track.  1. The estimated position/velocity states and a 
representation of the uncertainty of the estimate (and 
possibly additional non-kinematic attribute information) 
for an object or unresolved cluster of objects based on 
filtered observations from one or more sensors.  2. The 
estimated trajectory of an apparent object or group of 
objects. 3. The sequence of observations judged to be from 
the same object or group of objects. 
Track Correlation.  Process of associating multiple tracks 
from each of two different sensors and determining track 
pairs that represent the same objects. Track data 
(position, velocity, signature attributes, etc.) from one 
sensor are compared with those from the second sensor. 
Prevents/eliminates dual designations. Correlated track 
pairs can be combined to refine target position/velocity 
estimates. 
Track File.  A dataset that contains data associated with a 
target track, including metric measurements, signature 
data, state estimate, covariance matrix, track quality, 
class/type, and other attributes of the target. 
Track Fusion.  Merging of 2D tracks or 3D tracks from 
different sensors to form more precise 3D tracks. 
Track Quality.  A quantitative or qualitative measure of 
the reliability or credibility of a track. 
Tracking.  Following a target in angle, range, and Doppler. 
Usually involves measuring target position, smoothing 
position measurements to obtain a more accurate assessment 
of target position, predicting target position ahead in 
time, and using that prediction to gather next sample 
measurement. 
Track Initiation.  The process of inferring new target 
trajectories.  It typically consists of the association of 
several detections over time and a decision that accepts 
these detections as having originated from the same target. 
Track Update.  The combination of a track and an 
observation to form a revised track. 
Triangulation.  The process by which the range to a target 
is inferred from observations from two or more sensors. 
Compare: passive ranging. 
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Universal Time.  A measure of time that conforms, within a 
close approximation, to the mean diurnal rotation of the 
Earth and serves as the basis of civil timekeeping.  
Universal Time (UT1) is determined from observations of the 
stars, radio sources, and also from ranging observations of 
the moon and artificial Earth satellites.  The scale 
determined directly from such observations is designated 
Universal Time Observed (UTO); it is slightly dependent on 
the place of observation.  When UTO is corrected for the 
shift in longitude of the observing station caused by polar 
motion, the time scale UT1 is obtained. When an accuracy 
better than one second is not required, Universal Time can 
be used to mean Coordinated Universal Time.  Also called 
ZULU time. Formerly called Greenwich Mean Time. 
Weapons Allocation.  Designation of a certain weapon to 
attack a certain threat after Engagement Authorization is 
given. 
Weapons Assignment.  In air defense, the process by which 
weapons are assigned to individual air weapons controllers 
for use in accomplishing an assigned mission. Assignment of 
a particular interceptor to a particular target. 
Weapons Control.  The varying degree of formal control an 
area air defense commander exercises over all air defense 
weapons in his area of responsibility. 
Weapons of Mass Destruction (WMD).  In arms control usage, 
weapons that are capable of a high order of destruction 
and/or of being used in such a manner as to destroy large 
numbers of people. 
Weapons System.  Items that can be used directly by the 
armed forces to carry out combat missions and that cost 
more than $100,000 or for which the eventual total 
procurement cost is more than $10,000,000. That term does 
not include commercial items sold in substantial quantities 
to the general public. 
Weapon System Control.  That set of assessment, decision, 
and direction functions normally implemented automatically 
to assure that individual weapons are pointed, fired, and 
guided as necessary to intercept the designated attackers. 
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1. Introduction. 
 
1.1 Purpose of Document. 
 
This document outlines the high-level user requirements and 
features of the Ballistic Missile Defense System (BMDS). 
 
1.2 Product Overview. 
 
BMDS will enable the United States, its allies, and friends 
to detect, track, assign weapons to, engage, and assess the 
kill of threat ballistic missiles in the boost, mid-course 
and terminal phases of missile flight in a rapid, 
coordinated, and effective manner. 
 
1.3 References. 
 
Refer to Thesis Appendix B. 
 
2. Problem Statement 
 

 
 
3. User Description. 
 
3.1 User Demographics. 
 
The BMDS Battle Managers do not have a tool that supports 
ballistic missile defense operations for detecting, 
tracking, assigning weapons, engaging, and assessing the 
kill of threat ballistics missiles from potential 
adversaries. 
 

  Problem 
The problem of Current BMD efforts are 

uncoordinated and lack the ability 
to respond quickly to potential 
threats 

affects The U.S.’s confidence in its 
ability to defend against missiles 
and, ultimately, the safety, 
security, and prosperity of the 
free world 

The impact of which 
is 

Allows rogue states and entities to 
blackmail or attack free nations 

a successful solution 
would be 

To field a system that will counter 
the ballistic missile threat with a 
high level of confidence 
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3.1.1 Northern Command Battle Managers. 
 
3.1.2 Strategic Command Battle Managers. 
 
3.1.3 Combatant Commanders Battle Managers. 
 
3.1.4 Assigned Forces Battle Managers. 
 
3.2 User Profiles. 
 
3.3 User Environment. 
 
3.4 Key User Needs. 
 
The BMDS Battle Managers require the following 
capabilities: 
 
3.4.1 Detect the launch of a threat ballistic missile. 
3.4.2 Determine whether the detected object is a threat. 
3.4.3 Define the characteristics of the threat ballistic 
missile. 
3.4.4 Develop a firing solution to negate the threat 
ballistic missile. 
3.4.5 Engage the threat ballistic missile. 
3.4.6 Assess the kill of the threat ballistic missile. 
 
3.5 Alternatives. 
 
Without such a tool, current battle management functions 
will remain autonomous functions that are independent of 
each other. 
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System Boundary 

4. Product Overview. 
 
Product Perspective.  The below diagram depicts the BMDS 
virtual simulation and its external interfaces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The diagram on following page represents the functional 
aspects of the BMDS Kill Chain.  The Battle Manager must 
address the battle management functions identified on the 
BMDS Kill Chain. 
 
Refer to Thesis Chapter 4 for Kill Chain Description. 
 
5. Use Cases. 
 
Refer to Thesis Chapter 4 for description of BMDS Use 
Cases. 
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BMDS Radar Sensors 
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6. Feature Attributes. 
 
The table below contains the feature attributes that we 
will use to evaluate the features, track the continued 
feature definition, prioritize the risk, and manage the 
feature requirements. 
 
Feature Attribute Scale 
Status Designed, Approved, Proposed 
Realization Full, Partial, Limited 
Priority Critical, Important, Useful 
Complexity High, Medium, Low 
Risk:  Probability of 
Occurrence 

High, Medium, Low 

Risk: Consequence of 
Occurrence 

Catastrophic, Significant, 
Minor 

Stability High, Medium, Low 
 
7. Product Features. 
 
7.1 Forward-based sensing. 
 
Within BMDS we must design the capability to employ 
forward-based sensors to pickup the IR detection of a 
threat ballistic missile.  Without this capability, the 
BMDS Battle Managers will not have the ability for tracking 
the threat ballistic missile from booster burnout through 
the mid-course and terminal phases of missile flight.  This 
situation would result in track discrimination and a first 
shot opportunity either late in the mid-course phase or in 
the terminal phase. 
 
7.2 Track correlation. 
 
Given that two or more radars may provide real-time track 
data for a single threat ballistic missile, BMDS must be 
able to match this track data so that each threat ballistic 
missile in flight results in a single, accurate reported 
track in the battle management system. 
 
7.3 Common Time Reference. 
 
All sensors employed by BMDS must have a common time 
reference to provide accurate track data for track 
correlation algorithms. 
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7.4 Common Navigation Reference. 
 
All sensors employed by BMDS must employ a common geodetic 
navigation scheme to ensure accurate position, velocity, 
and altitude adjustments in real-time threat ballistic 
missile tracking. 
 
7.5 Sensor Registration. 
 
All sensors employed by BMDS must have a common alignment 
reference to ensure the correct geodetic alignment of the 
sensors for the objective of establishing gridlock. 
 
7.6 Cueing. 
 
BMDS must have the capability to direct sensors it employs 
to adjust radar field-of-views towards IR-detected track. 
 
7.7 Discrimination. 
 
BMDS must have the capability to accurately discriminate in 
real-time the threat ballistic missile from other objects 
such as deployed countermeasures and debris.  BMDS must 
provide the discrimination processes through all phases of 
threat ballistic missile flight. 
 
7.8 Multi-Sensor Data Fusion. 
 
BMDS must have the capability to fuse data from multiple, 
autonomous sensors with the intent of forming a more 
accurate estimation of the environment than is available 
from any single sensor.  The data fusion capability is time 
critical, covers a large geographical area, and requires 
accurate, reliable information at completion. 
 
7.9 Information Assurance. 
 
Information within BMDS must be secure both in transfer and 
processing to ensure data integrity throughout the kill 
chain.  Network and information services must ensure 
confidentiality and availability. 
 
7.10 Assurance of Kill. 
 
BMDS must provide assurance of kill within statistically 
acceptable limits. 
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7.11 Speed of Engagement. 
 
BMDS must provide the ability to simultaneously respond to 
multiple missile launches and assigned available weapons 
faster than a human controller executing the same process.  
This must be done within the framework of system weapons’ 
engagement windows. 
 
7.12 Automatic Weapons Assignment. 
 
BMDS must have the capability to automatically match its 
weapon capabilities and threat missile profiles in such a 
fashion that assets are properly assigned to ensure the 
maximum chance of destroying the threat missile or 
missiles. 
 
7.13 Situational Awareness. 
 
BMDS must provide real time, fine grain situational 
awareness to battle managers responsible for the kill chain 
in each portion of a threat missile’s flight as well as 
near real time, accurate rough grain situational awareness 
to all battle managers not in the geographic path of flight 
or without responsibility for the managing of the kill 
chain pertinent to a particular missile.  This must be done 
on a threat-by-threat basis. 
 
7.14 Fault Tolerance. 
 
BMDS must be capable of continuing operation in a degraded 
mode following a catastrophic failure or loss of any of its 
individual elements in a dynamic fashion, providing the 
remaining elements the ability to continue without the lost 
element(s). 
 
7.15 Cooperative and Autonomous Modes. 
 
The structure of BMDS must support autonomous (independent) 
action at the lowest level where the entire kill chain can 
be executed.  It must also support low cooperative, high 
cooperative, and fully cooperative modes of command and 
control. 
 
7.16 Combined Operation with Coalition Forces. 
 
BMDS must provide a means for the U.S. to coordinate its 
efforts with the forces of our allies and friends. 
 
7.17 Dynamic Reconfigurability. 
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As BMDS enabled and integrated assets move from one 
entity’s control to another entity’s control, they must 
seamlessly integrate into the new control structure. 
 
8.Constraints. 
 
To be determined. 
 
9. Performance Requirements. 
 
To be determined. 
 
10. Dependencies. 
 
To be determined. 
 
11. Documentation Requirements. 
 
To be determined. 
 
12. Issues. 
 
To be determined. 
 
13.Glossary. 
 
Refer to Thesis Appendix A 
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1.0 Introduction. 
 
1.1 Purpose. 
 
The purpose for this Software Requirements Specification 
(SRS) is to define the requirements for the Ballistic 
Missile Defense System (BMDS).  The SRS includes Use Cases, 
System Sequence Diagrams, System Operations Contracts, 
Domain Model and all related support documentation to 
describe the functionality of the BMDS.  The design team of 
CDR Michael Miklaski and CPT Joel Babbitt has prepared the 
SRS and its related documentation. 
 
1.2 Scope. 
 
The BMDS is being developed via a system-of-systems 
approach to better integrate sensors, weapons and command 
and control nodes into a single coherent command and 
control structure. BMDS requires an advanced and highly 
complex command and control element to effectively 
integrate system segments and execute battle management 
functions. The BMDS architecture is designed to accept 
enhanced capabilities as they are integrated into the BMDS, 
to achieve full interoperability of the system elements and 
interfaces with external systems and integrates the system 
with the national military command structure. 
 
1.3 References. 
 
See Thesis Appendix B. 
 
1.4 Assumptions and Dependencies. 
 
1.4.1 Assumptions. 
 
1.4.1.1  Non-instantiation.  No specific system is used to 
define the class.  All sensors, weapons, and C3 structures 
are generic in nature and have only those attributes that 
define the common functionality. 
 
1.4.2 Dependencies. 
 
1.4.2.1  Kill Chain.  The flow of events is dictated by the 
logical sequence represented in the Kill Chain Diagram (see 
9.3.1) 
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2.0 Use Case Model Survey. 
 
See Thesis Chapter 4. 
 
3.0 Actor Survey. 
 
Sensors – Within the sensor actors’ category there are two 
subcategories.  The first is Passive Infrared Sensors; the 
second is Active Radar Sensors.  Within each of these 
subcategories are the platform on which they reside; Space 
Based, Aircraft Based and Surface Based.    
The current state of Spaced Based Sensors are satellite 
buses with Infrared (IR) sensor payloads that can detect 
and track the heat from the plume of a ballistic missile 
during the launch and boost phase.  There are currently 
only passive IR sensors in Space, which can only provide 
lines of bearing and altitude.  Precise ranging is not 
feasible unless some form of triangulation occurs with 
other Sensors.  Research is being conducted to determine if 
the specific heat signature of the ballistic missile can 
identify the actual type of missile launched. Additional 
research is being conducted to determine the feasibility of 
“cold body” tracking of ballistic missile.  This is when 
the missile is in the cruise phase and the IR signature is 
reduced through the cooling of the skin by the cold 
temperatures of space.  The primary mission of Space Based 
Sensors is to provide initial cueing information to active 
sensors and to determine, based on launch position and 
angular motion, the intended target location. 
 
Airborne Sensors consist of both passive IR and active 
radar systems.  The developmental Airborne Laser System 
functions in much the same way as the Space Based Sensor 
with the exception of being able to determine range based 
on it’s Laser Detection and Ranging (LADAR) system.  Other 
Airborne Based Sensors consist of active radars and passive 
IR sensors onboard aircraft. 
 
Surface Based Sensors consist of existing active radars 
associated with Patriot, THAAD, AEGIS, National Systems, 
and developmental X-Band radar that can track ballistic 
missiles during the different stages of flight.  This 
category encompasses both ground and sea based sensor 
platforms. 
 
Weapons – Three separate subsets, ballistic, semi-active 
homing and active homing define the weapons actors.  The 
weapons may have an explosive payload, be a Directed Energy 
weapon, or a Kinetic Kill Vehicle (KKV). Ballistic weapons 



128 

require the weapons system to develop a collision intercept 
solution prior to deploying the weapon, then firing the 
weapon along a trajectory that will consummate an impact 
with the threat ballistic missile.  Semi-active weapons 
require that the weapons system utilize an active sensor, 
normally Continuous Wave (CW) Radar, to illuminate the 
threat missile and the weapon guides on the return signal 
until end game.  Active weapons receive queuing data from 
the weapons system prior to launch and will initially track 
the target in the same way as the semi-active weapon until 
it can acquire the target with its own active radar.  Once 
it acquires the target with its own radar it will 
discontinue semi-active and guide to the target utilizing 
its own information. 
 
Command and Control – These actors encompass all existing 
command and control nodes from the National Level, such as 
STRATCOM and SPACECOM, to the tactical commander level, 
such as Joint Forces Air Component Commander (JFACC), 
Carrier Battle Group Commanders (CVBG), Regional Air 
Defense Commanders (RADC), etc.  The level of information 
provided to the commanders is based on hierarchy.  The 
lower levels of command will require the most current and 
accurate information to prosecute the destruction of Threat 
Ballistic Missiles (TBM’s) and will need to receive time-
critical and precise parametric tracking data to achieve 
that goal.  Upper levels generally require only situational 
awareness information and will not need precise information 
such as parametric data and instead will be provided those 
necessary data to ensure proper execution for command and 
control functionality.  The need to know either high level 
or lower level information is determined by if one is 
involved in the kill chain for a missile and where the 
missile is in the phases (boost, midcourse, terminal). 
 
Threat Ballistic Missiles – For the purposes of our 
requirements specifications the category of ballistic 
missile will include only those missiles that travel 
through the exo-atmospheric region of space.  This excludes 
short-range tactical missiles that remain in the endo-
atmospheric region. 
 
4.0 Requirements 
 
4.1 Functional Requirements 
 
4.1.1 Sensors 
 
4.1.1.1 IR 
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4.1.1.1.1 Determine own position and global time accurately 
4.1.1.1.2 Detect the plume of a launching ballistic missile 
4.1.1.1.3 Track a ballistic missile from heat signature 
4.1.1.1.4 Identify type of missile from heat signature 
4.1.1.1.5 Accept queuing from external sources 
4.1.1.1.6 Provide queuing information to external sensors 
4.1.1.1.7 Develop a ballistic missile track 
4.1.1.1.8 Continuously track missile through field of view 
4.1.1.1.9 Determine launch position of detected Ballistic 
Missile 
4.1.1.1.10 Determine Predicted Impact Point (IPP) 
4.1.1.1.11 Transmit all known track data and own unit 
position to external units. 
 
4.1.1.2 Radar  
 
4.1.1.2.1 Determine own position and global time accurately 
4.1.1.2.2 Accept queuing information from external sources 
4.1.1.2.3 Detect ballistic missile in flight 
4.1.1.2.4 Track ballistic missile in flight 
4.1.1.2.5 Develop a ballistic missile track 
4.1.1.2.6 Provide track information to external sources 
4.1.1.2.7 Provide weapons quality parametric data to 
weapons system 
4.1.1.2.8 Continuously track missile through field of view 
4.1.1.2.9 Provide queuing information to external sensors 
4.1.1.2.10 Transmit all known track data and own unit 
position to external units. 
4.1.1.2.11 Assess kill 
 
4.1.2 Weapons 
 
4.1.2.1 Ballistic 
 
4.1.2.1.1 Determine own position and global time accurately 
4.1.2.1.2 Accept queuing information from external sources 
4.1.2.1.3 Accept target tracking parametric information 
from sensors 
4.1.2.1.4 Develop a collision intercept solution 
4.1.2.1.5 Slew the weapon to corresponded to the intercept 
solution 
4.1.2.1.6 Fire projectile 
 
4.1.2.2 Semi Active 
 
4.1.2.2.1 Determine own position and global time accurately 
4.1.2.2.2 Accept queuing information from external sources 
4.1.1.2.3 Accept target tracking parametric radar 
information from sensors 



130 

4.1.1.2.4 Develop a collision intercept solution 
4.1.1.2.5 Slew weapon seeker head to target 
4.1.1.2.5 Fire missile 
4.1.1.2.5 Home to target with return radar signal from 
sensors 
 
4.1.2.3 Active 
 
4.1.1.3.1 Determine own position and global time accurately  
4.1.1.3.2 Accept queuing information from external sources 
4.1.1.3.3 Accept target parametric radar data from sensors 
4.1.1.3.4 Develop a collision intercept solution 
4.1.1.3.5 Slew weapon seeker head to target 
4.1.1.3.3 Fire weapon 
4.1.3.3.3 Track in a semi-active mode based on return radar 
signal from sensors  
4.1.3.3.4 Acquire target with missile own radar 
4.1.3.3.5 Discontinue semi-active tracking upon own radar 
lock and assume collision intercept based on missile own 
radar parametric data 
 
4.1.3 Command and Control 
 
4.1.3.1 Upper Level. 
 
4.1.3.1.1 Accept Situational Awareness tracking data from 
all external sources to develop a single Common Operational 
Picture 
4.1.3.1.2 Transmit commands to Lower Level C2 nodes 
4.1.3.1.3 Receive reply messages from Lower Level C2 Nodes 
 
4.1.3.2 Lower Level. 
 
4.1.3.2.1 Accept tracking data from all external sources to 
develop a single Common Operational Picture 
4.1.3.2.2 Fuse all sensor data into a single actionable 
firing solution 
4.1.3.2.3 Transmit all Situational Awareness tracking data 
to Upper Level C2 Nodes 
4.1.3.2.4 Accept command messages from Upper Level C2 Nodes  
4.1.3.2.5 Transmit reply messages to Upper Level C2 Nodes 
 
4.2 Nonfunctional Requirements. 
 
4.2.1 Usability. 
 
To be determined. 
 
4.2.2 Reliability. 
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To be determined. 
 
4.2.3 Performance. 
 
To be determined. 
 
4.2.4 Supportability. 
 
To be determined. 
 
5.0 User Documentation. 
 
To be determined. 
 
6.0 Design Constraints. 
 
To be determined. 
 
7.0 Interface Components. 
 
To be determined. 
 
8.0 Interfaces. 
 
8.1 User Interfaces. 
 
To be determined. 
 
8.2 Hardware Interfaces. 
 
To be determined. 
 
8.3 Software Interfaces. 
 
To be determined. 
 
8.4 Communications Interfaces. 
 
To be determined. 
 
9.0 Appendix. 
 
9.1 Use Case Diagrams. 
 
See Thesis Chapter 4. 
 
9.2 System Sequence Diagrams. 
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See Thesis Appendix E. 
 
9.3 Domain Models. 
 
9.3.1 BMDS Kill Chain Functions. 
 
See Thesis Figure 1. 
 
9.3.2 BMDS Distributed C2 Architecture. 
 
See Thesis Figure 5. 
 
9.4 System Operations Contracts. 
 
To be determined. 
 
9.5 Glossary. 
 
See Thesis Appendix A for Glossary. 
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APPENDIX D. SYSTEM SEQUENCE DIAGRAMS (SSD) 

A. SSD FOR HIGH-LEVEL BMDS USE CASE 

This SSD (Figure 14) represents the high-level 

interaction of the sensors, weapons, and BMC2 through the 

five major phases of the kill chain in the prosecution a 

threat ballistic missile to include deliberate planning and 

cueing.  The details of this SSD are further defined in the 

follow-on SSD for all the use cases.  The flow of events as 

described in the use cases and messaging between the 

objects is as depicted, a BMC2 will provide planning and 

cueing to sensors in response to a potential threat.  The 

sensors conduct surveillance until a TBM is detected where 

it then conducts tracking, passing that information both to 

the BMC2 and weapons systems.  The BMC2 assigns a weapon 

based on the track data, the selected weapon system engages 

the threat ballistic missile destroying it, and the BMC2 

assesses the outcome of the engagement via the sensor track 

data to determine whether further engagements are 

warranted. 
B. SSD FOR USE CASE 1 & 1.1 

The flow of events for the SSD covering use cases 1 & 

1.1 (Figure 15) begins with the assumption that a ballistic 

missile threat exists and that there is a sufficient amount 

of time to conduct deliberate planning prior to the 

anticipated first available launch window.  In this 

instance the commanders, via the BMC2 and Sensor Net, issue 

a warning in the form of cueing messages for sensors to 

observe a specific region.  Once a TBM is detected, the 

sensor commences continuous tracking of the missile and 

forwards a cueing message to the BMC2 and Sensor Net so 

that other sensors can detect and track the TBM. 
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The sensor must first develop a local track, through 

whatever processing method that particular sensor utilizes, 

and then it forwards that data to its associated Sensor 

Fusion Processor.  The SFP receives all of the track data 

from the various sensors and attempts to both discriminate 

what type of missile it is and whether any countermeasures 

have been employed, to detect the warhead from the decoys.  

The data is further filtered and then fused into one 

coherent track and forwarded to the Sensor Net for 

utilization by C2 elements and Weapons systems. 
C. SSD FOR USE CASE 2 

Once a sensor has developed a track, it is 

cooperatively tracked and classified as described by the 

flow of events in the SSD for use case no. 2 (Figure 16). 

The Sensor Fusion Processor continues to evaluate the track 

in an effort to determine the identity of the missile 

through the various electronic signatures from the sensors 

and attempts to refine and improve the track quality by 

pulling available data from the Sensor Net and making 

comparisons of the data.  This updated data is forwarded to 

the BMC2.  The BMC2 maintains a master track list is 

developed and pushes the track data to the Weapons Net for 

use in the weapons bidding process.  The BMC2 forwards an 

appropriate cueing message to remote Sensor Nets as the TBM 

transits from sensor coverage area to another. 

D. SSD FOR USE CASE 3 

The SSD for use case 3 (Figure 17) shows the process 

for weapons bidding of the weapons systems.  As the target 

list is produced by BMC2 and pushed out to the Weapons Net, 

the Weapons Net places bid requests for each target to each 

of the Weapons Systems participating in the network.  The 

Weapons System makes an assessment of it’s own ability to 

prosecute the target and forwards that information to BMC2 
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via the Weapons Net.  The BMC2 then makes a weapons 

assignment based on the bids and an authorization to 

release weapons at the appropriate time. 

E. SSD FOR USE CASE 4 

Once a Weapons System has been identified for missile 

engagement, that systems requests a discrete priority path 

for parametric track data from the Sensor Net as depicted 

in SSD for use case no. 4 (Figure 18).  This data is then 

provided to the interceptor for consummation of the 

intercept and destruction of a TBM once launch approval is 

given. 
F. SSD FOR USE CASE 5 

SSD for use case 5 (Figure 18) depicts the flow of 

events in the process of assessing the status of an 

intercept of a TBM.  The BMC2 utilizes track data provided 

via the Sensor Net and conducts an assessment of that data 

as described in use case no. 5 and promulgates a kill 

report for distribution if the intercept was successful. 
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Figure 17.   SSD for High-Level Use Case 
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Figure 18.   SSD for Use Case 1 & 1.1 
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Figure 19.   SSD for Use Case 2 
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Figure 20.   SSD for Use Case 3 
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Figure 21.   SSD for Use Case 4 



141 

 
Figure 22.   SSD for Use Case 5 

 
 
 



142 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



143 

APPENDIX E. UML-RT MODELS 

A. SENSOR 

 
Figure 23.   Sensor UML-RT Diagram 

 

Cueing Capsule:  Passes cues received by the Track 

Forming Capsule directly to the Sensor Net. 

Orientation Capsule:  Controls the orientation and 

scanning patterns of the sensor.  It receives messages from 

the Sensor Controlling Command and acts on them. 

Track Forming Capsule:  Forms tracks from radar or IR 

hits.  Sends Cues to the Cueing Capsule.  Performs track 

discrimination to try to prevent debris and decoys from 

overloading the SFP.  Once a track is adequately developed, 

it pushes it to the SFP Interface Capsule. 
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SFP Interface Capsule:  Responsible for pushing tracks 

from the Track Forming Capsule to the sensor’s higher SFP. 
 

B. SENSOR CONTROLLING AUTHORITY 

 
Figure 24.   Sensor Controlling Authority UML-RT Diagram 

 
Cueing Capsule:  Passes cues received by Sensor Net to 

the Sensor Command Capsule. 

Orienting Capsule:  Issues commands to control the 

orientation and scanning patterns of subordinate sensors.  

It distributes commands from the Sensor Command Capsule. 

Sensor Command Capsule:  Receives cues from the Cueing 

Capsule and issues command to redirect sensor(s). 
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C. COMPETENT AUTHORITY 

 
Figure 25.   Competent Authority UML-RT Diagram 
 

Cueing Capsule:  Passes cues to the Sensor Net. 
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D. SENSOR FUSION PROCESSOR (SFP) 

 
Figure 26.   Sensor Fusion Processor UML-RT Diagram 

 
Sensor Net Interface Capsule:  Responsible for pushing 

tracks from the Track List Capsule to the Sensor Net.  

Receives tracks requested by the Collaborative Fusion 

Capsule through Sensor Net from other SFPs. 

Track Fusing Capsule:  Takes multiple tracks per 

target from the Sensor Interface Capsule, correlates or 

fuses them into one single track per target in real time.  

Performs track discrimination as a backup to the sensor’s 

native discrimination capability to prevent overload on the 

Sensor Net. 

Sensor Interface Capsule:  Serves as the primary 

interface to all assigned Sensors.  If it is receiving data 

from more than one sensor, then it sends all tracks to the 
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Track Fusing Capsule.  If it is only receiving data from 

one sensor, then it passes it directly to the Collaborative 

Fusion Capsule. 

Collaborative Fusion Capsule:  Takes fused or raw 

local tracks (one per target) and fuses them with tracks 

received from other SFPs via the SFP Interface Capsule of 

the Sensor Net. 

Track List Capsule:  Responsible for compiling and 

providing the internal list of tracks for the SFP and 

preventing duplicates.  It provides this data to both the 

TFC and the CFC.  It provides this information upon request 

to the sensor net.  It also serves as a repository for 

commands received from Sensor Net. 
 

E. SFP’S SENSOR INTERFACE CAPSULE 

 
Figure 27.   Sensor Interface Capsule UML-RT Diagram 
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Sensor Communications Capsules:  Establish connections 

with sensors.  It only allows connections from those 

sensors it is programmed to receive.  Every time a sensor 

passes a track, the SCC checks the state machine to 

determine where to send its track data.  If more than one 

SCC checks in a short period of time (say within 100 ms or 

less) then the output of the state machine turns to true.  

The state machine will also output true if an SCC is unable 

to send its data to the CFC Communications Capsule (as 

another sensor already has the channel tied up). 

TFC Communications Capsule:  Handles all data streams 

sent from the Sensor Communications Capsules to the (higher 

level) Track Fusing Capsule. 

CFC Communications Capsules:  Handles only one data 

stream sent from one Sensor Communications Capsule to the 

(higher level) Collaborative Fusion Capsule. 
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F. SFP’S TRACK FUSING CAPSULE 

 
Figure 28.   Track Fusing Capsule UML-RT Diagram 
 

Fusing/Correlation/Discrimination Capsule:  This 

capsule periodically checks each incoming track with the 

(higher level) Track List Capsule via the TLC 

Communications Capsule.  If a ‘stop sending’ is received 

that pertains to the parent SFP, then the Fusing Capsule 

ceases dealing with that track until the ‘stop sending’ is 

lifted.  Before Fusing or Correlation happens, 

Discrimination occurs to try to filter out the clutter and 

reduce the amount of tracks passed on through the rest of 

the Sensor Fusion Processor.  Remaining tracks that pertain 

to targets that are new or do not have a stop order against 

them are then fused in real-time and forwarded to the 

(higher level) Collaborative Fusion Capsule. 
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TLC Communications Capsule:  Checks all incoming 

tracks against the (higher level) Track List Capsule.  If 

that track has a ‘stop sending’ order for the parent SFP, 

then the order will be passed to the 

Fusing/Correlation/Discrimination Capsule, thereby allowing 

the Fusing/Correlation/Discrimination Capsule to spend its 

processing power on fusing other capsules.  If the track is 

new, it will be registered with the (higher level) Track 

List Capsule. 

SIC Communications Capsule:  Handles all data streams 

received from the (higher level) Sensor Interface Capsule. 

CFC Communications Capsules:  Handles all data streams 

from the Fusing Capsule sent to the (higher level) 

Collaborative Fusion Capsule.
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G. SFP’S COLLABORATIVE FUSING CAPSULE 

 
Figure 29.   Collaborative Fusing Capsule UML-RT Diagram 

 

State Machine:  Contains the logic to decide whether 

it is worthwhile to pursue attempting to collaboratively 

fuse a track.  This state machine contains several factors 

which would have to all be within acceptable parameters for 

it to allow collaborative fusion to occur.  To reiterate in 

terms of a logical equation, it is an AND logic equation 

(for example: network usage AND track type fusible AND 

better fusible remote track available AND track moving slow 

enough AND pre-defined quality threshold not met). 

Fusing Capsule:  Checks each incoming track with the 

(higher level) Track List Capsule via the TLC 

Communications Capsule.  If a ‘stop sending’ order is 
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received that pertains to the parent SFP, then the Fusing 

Capsule checks with the state machine to determine whether 

it should either cease dealing with that track until the 

‘stop sending’ is rescinded or attempt to improve the track 

through collaborative fusion.  Tracks that pertain to 

targets that are new or do not have a stop order against 

them are forwarded to the Sensor Net.  If collaborative 

fusion is ordered for a ‘stop sending’ track, then the 

Fusing Capsule will suppress the ‘stop sending’ in the 

local (higher level) Track List Capsule.  This allows the 

track to flow through the (higher level) Track 

Fusing/Correlation/Discrimination Capsule.  Additionally, 

the Fusing Capsule will request a copy of the winning track 

through the Sensor Net and will fuse it with its current 

track.  If the collaboratively fused track will beat the 

previous winning track, then it sends the track and 

continues to suppress the ‘stop sending’ in the local Track 

List Capsule until the Sensor Net feedback comes back to 

authoritatively either continue the ‘stop sending’ on the 

collaboratively fused track or allow it to send.  If the 

(parent) Collaborative Fusion Capsule is receiving tracks 

directly from the (higher level) Sensor Interface Capsule, 

then the Collaborative Fusion Capsule will also perform 

additional discrimination as necessary.  However, local 

fusion as performed by the (higher level) Track 

Fusing/Collaboration/Discrimination Capsule is of course 

not possible for a single sensor’s input, as it requires at 

least two separate tracks to fuse.. 

TLC Communications Capsule:  Checks all incoming 

tracks against the (higher level) Track List Capsule.  If 

that track has a ‘stop sending’ order for the parent SFP, 

then the order will be passed to the Fusing Capsule.  If 
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the track is new, it will register it with the (higher 

level) Track List Capsule. 

SIC-TFC Communications Capsule:  Handles all data 

streams received from the (higher level) Sensor Interface 

Capsule and Track Fusing Capsule. 

SNIC Communications Capsules:  Handle all data streams 

from the Fusing Capsule sent to the (higher level) Sensor 

Net Interface Capsule. 

 
H. SFP’S TRACK LIST CAPSULE 

 
Figure 30.   Track Capsule List UML-RT Diagram 
 
TFC-CFC Communications Capsule:  Handles all data 

streams received from the (higher level) Track 

Fusing/Correlation/Discrimination Capsule and Collaborative 

Fusing Capsule. 
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Track Correlation Capsule:  Correlates all tracks 

received with Track Registry Capsule.  Tracks, which are 

not screened out, are registered as new tracks with the 

Track Registry Capsule.  Track numbers of tracks that are 

screened out are returned to the (higher level) Track 

Fusing/Correlation/Discrimination Capsule or (higher level) 

Collaborative Fusing Capsule, depending on where the track 

came from. 

Track Registry Capsule:  Maintains the SFP’s master 

list of all perceived valid tracks as well as any 

additional tracks received from the Sensor Net, including 

any commands added to received tracks or commands 

pertaining to the locally maintained tracks. 

Track List Receiving Capsule:  Receives the Track List 

sent out periodically from the (higher level) Sensor Net. 
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I. SFP’S SENSOR NET INTERFACE CAPSULE 

 
Figure 31.   Sensor Net Interface Capsule UML-RT Diagram 

 

Sensor Net Communications Capsule:  Establishes 

connections with the Sensor Net.  It handles all 

communications between the parent SFP and the Sensor Net. 

CFC Communications Capsule:  Handles all data streams 

between the Sensor Net Communications Capsule and the 

(higher level) Collaborative Fusion Capsule. 

TLC Communications Capsules:  Handle only one data 

stream sent from the Sensor Net Communications Channel to 

the (higher level) Track List Capsule. 
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J. SENSOR NET 

 
Figure 32.   Sensor Net UML-RT Diagram 

SFP Interface Capsule:  Handles all interfaces between 

the SFPs and Sensor Net, including receiving fused track 

data, handling requests for fused data from peer SFPs, and 

forwarding said fused data as it is received in real time, 

passing track data to the Track Correlation Capsule, and 

receiving and forwarding track lists from the Track Server 

Capsule.  This capsule also ‘shorts’ (sends before 

processing through the TCC/TRC/TSC loop) copies of 

streaming firing-solution quality data to the Weapon 

Platform Interface Capsule if a track is marked as ‘hot’ 

(i.e., tracks which have a weapon awaiting a firing 

solution to launch). 

Cueing Capsule:  Receives cueing messages through the 

Track Correlation Capsule from Trusted Sources.  It checks 
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these cueing messages against the current Track List.  If 

the referenced track does not correlate to a track on the 

list, the Cueing Capsule then passes these cueing messages 

to the Sensor Controlling Commands for diffusion to the 

various sensors. 

Track Correlation Capsule:  Takes all fused tracks and 

correlates them with the Track Registry.  This correlation 

consists of screening out multiple instances of the same 

track by comparing the quality of fused tracks from 

multiple SFPs. 

Track Registry Capsule:  Maintains the SFP’s master 

list of all perceived valid tracks. Note:  All changes in a 

track’s status are maintained (“killed,” “active,” 

“inactive,” etc). 

Track Server Capsule:  Responsible for providing 

BMC2s, Weapons Net, Sensor Fusion Processors, and peer 

Sensor Nets with a Track List.  It constantly receives an 

updated track list from the Track Registry Capsule and then 

communicates it to all requesting entities.  It receives 

‘hot’ notifications from Weapon Platforms (i.e., tracks 

which have a weapon awaiting a firing solution to launch) 

and, if it is a valid track, directs the SFP Interface 

Capsule to short the winning version of that track directly 

to the Weapon Platform Interface Capsule as well as 

continuing to push it to the Track Correlation Capsule. 

Weapon Platform Interface Capsule:  This capsule 

provides the latest firing-solution quality track data to 

requesting weapons platforms upon demand. 

Peer/Higher Interface Capsule:  Pushes the track list 

in the form of either low-detail tracks (i.e., those with 

no parametric data) to Peer Sensor Nets or unmodified 



158 

tracks to the BMC2.  It receives their lists (peer Sensor 

Nets) or modifications to a Track (BMC2) and passes them to 

the Track Correlation Capsule for integration into the 

Track Registry. 

Some Areas of Potential Conflict: 

-What if a Weapon Platform requests a track and it is 

‘inactive’ on the track list? 

-What if a Weapon Platform comes looking for a track 

and it is delayed due to processing through the Sensor Net 

capsules?  Can we ensure no delay is introduced yet firing 

solution quality of provided tracks is maintained? 
 
K. SENSOR NET’S SFP INTERFACE CAPSULE 

 
Figure 33.   SFP Interface Capsule UML-RT Diagram 
 



159 

TSC Communications Capsule:  Handles the data stream 

between the (higher level) Track Server Capsule and the 

Sensor Fusion Processor Communications Capsule.  The track 

list and all ‘short’ commands from the (higher level) Track 

Registry Capsule are passed to the Request Registry 

Capsule. 

TCC Communications Capsule:  Passes tracks from the 

Sensor Fusion Processor Communications Capsule to the 

(higher level) Track Correlation Capsule. 

WPIC Communications Capsules:  Passes ‘shorted’ tracks 

from the Sensor Fusion Processor Communications Capsule to 

the (higher level) Weapon Platform Interface Capsule. 

Request Registry Capsule:  Maintains a registry of all 

incoming and outgoing data streams as well as a current 

copy of the track list from the (higher level) Track 

Registry.  This capsule is responsible for retrieving and 

forwarding track data to SFPs that want to enhance their 

own tracks with remote SFP’s track data (this makes the SFP 

Forum concept into an 1 X N bandwidth usage structure 

instead of an N X N bandwidth usage structure, which is 

what happens if you have SFPs talking to one another).  The 

Request Registry Capsule does not automatically retrieve 

and forward data requested by the various SFPs, however.  

It has an internal state machine that decides whether or 

not to pass it.  This internal state machine is identical 

to the SFP’s Collaborative Fusing Capsule’s equation, with 

the exception that the RRC’s state machine has a better 

view of the network and its components. The state machine’s 

decision to either allow or disallow a collaborative fusion 

request to be processed can be understood to be the result 

of an evaluation of several key factors, all of which must 

be within allowable parameters.  This state machine 
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decision is most accurately understood as an AND logic 

equation (network usage AND track type fusible AND better 

fusible remote track available AND track moving slow enough 

AND pre-determined quality threshold not met).  This 

capsule also receives all ‘short’ commands and ensures that 

the appropriate data stream is ‘shorted’ to the WPIC 

Communications Capsule with the appropriate track ID on the 

data stream. 

Sensor Fusion Processor Communications Capsules:  

Establish communications between Sensor Fusion Processors 

and the Sensor Net.  Handle all data flows between the SFPs 

and the Sensor Net.  Passes tracks to the Request Registry 

Capsule when so directed by the RRC. 
L. SENSOR NET’S TRACK FILTER CAPSULE 

 
Figure 34.   Track Filter Capsule UML-RT Diagram 
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Sensor Directing Capsule:  Contains the logic that 

decides what to do with tracks as they come in.  Tracks 

that are correlated out have a ‘stop sending’ order added 

to the track data, which will be put on the master track 

list and distributed to the parent SFP for action. 

List Maintenance Capsule:  The concept of this capsule 

is that it must take these vast streams of data flowing 

into it and, after comparing them to the list of current 

tracks, decide which of these constitute new tracks that 

must be added to the list or which are better tracks than 

what was previously had, and which are to be dropped.  This 

processing is all done in parallel without the benefit of 

mutual exclusion.  Therefore, in order to ensure accurate 

decisions are tacked onto the tracks before they are passed 

to the (higher level) Track Registry Capsule, it then 

serializes all input and passes it along with its decisions 

to the Sensor Directing Capsule so that the tracks can 

receive appropriate markings to cause the correct actions 

to be taken by the SFPs. 

CC Communications Capsule:  Receives cues from the 

(higher level) Cueing Capsule and passes them to the List 

Maintenance Capsule.  Unlike all others, it receives a 

valid/invalid response directly from the List Maintenance 

Capsule before the LMC writes to the (higher level) Track 

Registry Capsule. 

PHIC Communications Capsule:  Handles all traffic from 

the (higher level) Peer/Higher Interface Capsule.  It takes 

potentially multiple feeds and serializes them to reduce 

the timing complexity. 

SIC Communications Capsule:  Handles all traffic from 

the (higher level) SFP Interface Capsule.  It takes 

potentially multiple feeds and serializes them. 
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TRC Communications Capsule:  Forwards all tracks with 

embedded commands to the (higher level) Track Registry 

Capsule.  It also forwards requests for the master track 

list from the List Maintenance Capsule and replies with the 

master track list to the List Maintenance Capsule once the 

master track list is received. 
 
M. SENSOR NET’S CUEING CAPSULE 

 
Figure 35.   Cueing Capsule UML-RT Diagram 

 
Cue Correlation Capsule:  This capsule screens all 

inputs received using a list of the last several seconds of 

cues.  If it determines that a cue is virtually the same as 

one in its resident memory, then it will drop the cue 

rather than forward it.  Those that pass screening are 

forwarded to the TFC Communications Capsule. 
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S-CA-SN Communications Capsule:  Receives cues 

directly from Sensors, Competent Authorities, and other 

Sensor Nets and forwards them to the Cue Correlation 

Capsule. 

TCC Communications Capsule:  Forwards all cues to the 

(higher level) Track Correlation Capsule.  It then receives 

a copy of each cue back with either ‘invalid’ or ‘valid’ on 

it.  It forwards the ‘valid’ cues to the Sensor Controlling 

Authority Communications Capsule for dissemination. 

Sensor Controlling Authority Communications Capsule: 

responsible for establishing communications with Sensor 

Controlling Authorities.  It forwards all valid cues to all 

Sensor Controlling Authorities affiliated with the Sensor 

Net. 

Note: The whole cueing system is a separate system 

from the track list passing that goes on through other 

channels.  It is designed to be much faster to allow Sensor 

Controlling Authorities the maximum decision time possible. 
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N. SENSOR NET’S TRACK REGISTRY CAPSULE 

 
Figure 36.   Track Registry Capsule UML-RT Diagram 

 

Track Database Capsule:  Maintains the Sensor Net’s 

master list of all perceived valid tracks. Note:  All 

changes in a track’s status are maintained (“killed,” 

“active,” “inactive,” etc). 

TCC Communications Capsule:  Handles all data streams 

between the (higher level) Track Communications Capsule and 

the Track Database and TSC Communications Capsules.  It 

passes valid, post-correlation tracks to the Track Database 

Capsule for writing to the database.  It passes the (higher 

level) Track Correlation Capsule’s requests for a copy of 

the master track list to the TSC Communications Capsule and 

receives that list.  It then passes the master track list 

to the (higher level) Track Correlation Capsule. 
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TSC Communications Capsule:  Receives the master track 

list from the Track Database Capsule and distributes it to 

the (higher level) Track Server Capsule as well as the TCC 

Communications Capsule. 
 
O. SENSOR NET’S TRACK SERVER CAPSULE 

 
Figure 37.   Track Server Capsule UML-RT Diagram 
 
Shorting Capsule:  Receives requests for streaming 

telemetry data from the WPIC Communications Capsule.  It 

then matches it to a track from the most current track list 

and sends a ‘short order’ to the SIC Communications 

Capsule. 

List Capsule:  Receives the track list from the TRC 

Communications Capsule and streams it out to all connected 

capsules. 
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Peer Abstraction Capsule:  Receives the track list 

from the List Capsule and streams two copies to the PHIC 

Communications Capsule.  The first copy is unmodified and 

is meant for the BMC2.  The second copy gets abstracted 

(i.e., unnecessary detail is removed) and is meant for Peer 

Sensor Nets. 

WPIC Communications Capsule:  Receives requests for 

streaming telemetry data from the Weapon Platform 

Communications Capsules and passes these requests to the 

Shorting Capsule, passing back an acknowledgement to the 

weapon when the request has been shorted or passing back 

some other status if not able to comply. 

PHIC Communications Capsule:  Receives data from the 

Peer Abstraction Capsule and passes it via one of two ports 

(depending on whether or not it is abstracted) to the 

(higher level) Peer/Higher Interface Capsule. 

TRC Communications Capsule:  Receives the track list 

from the (higher level) Track Registry Capsule and passes 

it to the List Capsule. 

SIC Communications Capsule:  Receives the track list 

from the List Capsule and Shorting Orders from the Shorting 

Capsule.  Forwards them to the (higher level) SFP Interface 

Capsule for action. 
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P. SENSOR NET’S PEER/HIGHER INTERFACE CAPSULE 

 
Figure 38.   Peer/Higher Interface Capsule UML-RT Diagram 

 
TSC Communications Capsule:  Handles all data streams 

between the BMC2 Communications Capsule or Peer Sensor Net 

Communications Capsule and the (higher level) Track Server 

Capsule. 

TCC Communications Capsule:  Receives modifications 

from the BMC2 Communications Capsule as well as Low Detail 

Track Lists from the Peer Sensor Net Communications Capsule 

and passes it to the (higher level) Track Correlation 

Capsule. 

Peer Sensor Net Communications Capsules:  Establish 

communications between the owning Sensor Net and its peer 

Sensor Nets.  They then handle requests by peer sensor nets 

for Track Lists of Low Detail Track Data, passing such 
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requests to the TSC Communications Capsules.  They also 

pass their Low Detail Track Data to the TFC Communications 

Capsules for integration into the (higher level) Track 

Registry Capsule, in order to provide better situational 

awareness to the parent Sensor Net. 

BMC2 Communications Capsule:  Establishes 

communications between the owning Sensor Net and its 

superior BMC2.  It handles requests from the BMC2 for track 

data.  It also passes modified track data from the BMC2 to 

the TFC Communications Capsule. 
 
Q. SENSOR NET’S WEAPONS PLATFORM INTERFACE CAPSULE 

 
Figure 39.   Weapons Platform Interface Capsule UML-RT 

Diagram 
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TSC Communications Capsule:  Handles all data streams 

between the Weapon Platform Communications Capsule and the 

(higher level) Track Server Capsule. 

SIC Communications Capsules:  Receive shorted tracks 

from the (higher level) SFP Interface Capsule.  These 

tracks are passed to the appropriate Weapon Platform 

Communications Capsule. 

Weapon Platform Communications Capsules:  Establishes 

communications between the Sensor Net and Weapon Platforms.  

Each instantiation of this capsule carries a priority, 

which is the priority of the target the weapon platform is 

assigned (obtained from the BMC2’s target list by the 

weapon platform and is part of the request for a firing 

solution). 
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R. WEAPONS PLATFORM 

 
Figure 40.    Weapons Platform UML-RT Diagram 
 
Weapon Interface Capsule:  Relays fire-control data to 

the weapons and performs all weapon interface functions. 

Command & Control (C2) Capsule:  Receives Target List 

from Weapon Net Interface Capsule.  It then uses the Fire 

Control Capsule to generate its bids, then submits the bids 

through the WNIC to the Weapon Net.  This capsule also 

oversees the Fire Control Capsule and issues commands to 

its own weapons (through the FCC). 

Fire Control Capsule:  Performs all normal fire 

control functions, computes target bids, and requests track 

data through the SNIC. 

Sensor Net Interface Capsule:  Requests and relays 

track information for assigned targets. 
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Weapon Net Interface Capsule:  Receives and replies to 

Target List Bid Requests.  Relays assigned tracks to C2 

capsule. 

 
S. BMC2 

 
Figure 41.   BMC2 UML-RT Diagram 

 
Cueing Capsule:  Passes abstracted track data as 

cueing messages to peer Sensor Nets. 

Battle Management Capsule:  Validates or modifies 

proposed weapons assignments from Weapons Net.  Controls 

and updates Master Target List.  Does Predictive Tracking 

for current tracks. 

Sensor Net Interface Capsule:  Receives Track List 

from Sensor Net and pushes modifications due to C2 

Overrides back to Sensor Net. 
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Weapon Net Interface Capsule:  Pushes the Master 

Target List to Weapon Net and receives the proposed weapons 

assignments. 

T. WEAPON 

 
Figure 42.   Weapon UML-RT Diagram 

 
Control Capsule:  Receives guidance and telemetry data 

through WPIC from parent Weapon Platform.  Controls the 

weapon and provides feedback to the weapon platform. 

Weapon Platform Interface Capsule:  Establishes and 

maintains communications with the parent Weapon Platform. 
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U. WEAPON NET 

 
Figure 43.   Weapon Net UML-RT Diagram 

 
Control Capsule:  Receives guidance and telemetry data 

through WPIC from parent Weapon Platform.  Controls the 

weapon and provides feedback to the weapon platform. 

Weapon Platform Interface Capsule:  Establishes and 

maintains communications with the parent Weapon Platform. 
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APPENDIX F. SIMULATION CODE 

A. SFP SIMULATION CODE. 
Read Me File. 

Notes on this Simulation: 

OMNeT++ does not handle 0 modules of a type being 
instantiated.  Therefore, you must instantiate at least one 
of both types of sensors.  Because of this, it is 
impossible to test the SIC to CFC link (which is only used 
when there's one sensor).  The simulation would have to be 
retooled, and one of the two sensors would have to be 
removed. 
In the Plove analysis, it will always appear that ColFus 
Tracks get to SensorNet faster than Normal Tracks.  This is 
not true.  It appears this way because the radar sensors 
are labeled starting with 0, whereas the numbers of the IR 
Sensors follow after the radar sensors (so if there's 3 
radar and 2 IR, your radar will be 0,1,2, and your IR will 
be 3,4).  IR has a natural delay of 500ms in it 
(mathematical equation based on orbital distance, speed of 
light, and a 93000Hz satellite downlink frequency).  Tracks 
are chosen for fusion starting with sensor 0 and going up 
to the number of collaborative fusion requests - 1.  
Therefore, radar sensors will always be chosen for fusion 
before IR sensors, which inadvertently ensures that at 
least some of the Normal Tracks will have a 500ms delay.  
This kicks the average throughput time for Normal Tracks up 
above those of Collaboratively Fused Tracks. 
Time Constraints were gathered from the following: 

Process_Time = Estimate from Professor Wen Su based on 
simple routing of the message at the IP layer with no 
packet analysis other than source and destination. 
ListCheck = Estimate from Professor Wen Su based on basic 
XORing function which XORs the most significant bits (gets 
it within an ellipse of certainty) from an associative 
memory bank containing a master track list of a couple of 
hundred items. 

Fusion = total guess as sensor fusion has yet to be 
invented. 
Track Size for both IR and Radar are based on a summation 
of fields that would be required for a space ballistic 
missile tracks.  We added in additional bits for any 
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additional system overhead, etc, that may not have existed 
in other data link systems such as JTIDS. 
//---------------------------------------------------------
---- 

// file: SFPSim.ned 
// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 14 Nov 2003 
//---------------------------------------------------------
---- 
 
 

// RadarSensor -- 
// 
// A ground based radar sensor which sends sensor data to 
the SFP. 
// 
simple RadarSensor  
    gates:  
        out: out;  

endsimple  
 
 
// IRSensor -- 
// 
// A satellite based IR sensor which sends sensor data to 
the SFP. 
// 

simple IRSensor  
    gates:  
        out: out;  
endsimple  
 
 
// SensorInterfaceCapsule -- 
// Serves as the primary interface to all assigned Sensors.   
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// If it is receiving data from more than one sensor, then 
it sends all tracks 
// to the Track Fusing Capsule.  If it is only receiving 
data from one sensor, 

// then it passes it directly to the Collaborative Fusion 
Capsule. 
// 
simple SensorInterfaceCapsule  
    gates:  
        in: in[]; // in from multiple sensors 
        out: TFCout[]; // out to Track Fusing Capsule 
(multiple connections) 

        out: CFCout; // out to Collaborative Fusion Capsule 
(only one connection) 
endsimple  
 
 
// SensorNetInterfaceCapsule -- 
// 
// Responsible for pushing tracks from the Track List 
Capsule to the Sensor Net.  
// Receives tracks requested by the Collaborative Fusion 
Capsule through Sensor  
// Net from other SFPs. 
// 
simple SensorNetInterfaceCapsule  
    gates:  
        out: SNRequestout[]; //port used to request 
collaboratively fused tracks from SN 
        in: SNRequestin[]; //port used to receive 
collaboratively fused tracks from SN 
        out: CFCRequestout[]; //port used to pass 
collaboratively fused tracks to CFC 
        in: CFCRequestin[]; //port used to receive requests 
from CFC for c. fused tracks 
        in: TrackListin; //port used to receive the master 
track list from SN 
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        out: TrackListout; //port used to push the master 
track list to the TLC 
        in: CFCin[]; //port used to receive tracks from CFC 
        out: SNout[]; //port used to push tracks to SN 

endsimple  
 
 
// TrackFusingCapsule -- 
// 
// Takes multiple tracks per target from the Sensor 
Interface Capsule and fuses 
// them into one single track per target in real time. 

// 
simple TrackFusingCapsule  
    gates:  
        in: SICin[]; //port that receives tracks from SIC 
        out: CFCout[]; //port used to push tracks to CFC 
        out: TLCout[]; //port used to check target list 
        in: TLCin[]; //port used to receive answers from 
TLC 

endsimple  
 
 
// CollaborativeFusionCapsule -- 
// 
// Takes fused or raw local tracks (one per target) and 
fuses them with tracks  
// received from other SFPs via the SFP Interface Capsule 
of the Sensor Net. 
// 
simple CollaborativeFusionCapsule  
    gates:  
        in: SICin; //port that receives tracks from SIC 
        in: TFCin[]; //port that receives tracks from TFC 
        out: SNICout[]; //port used to push tracks to SNIC 
        out: TLCout[]; //port used to check target list 
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        in: TLCin[]; //port used to receive answers from 
TLC 
        out: SNICRequestout[]; //port used to request c. 
fused tracks from SN 

        in: SNICRequestin[]; //port used to receive c. 
fused tracks from SN 
endsimple  
 
 
//TrackListCapsule -- 
// 
// References its internal track list, meshes the master 
track list with its own. 
// 
simple TrackListCapsule  
    gates:  
        in: TrackListin; //port that receives the master 
target list from the SNIC 
        in: TFCin[]; //port that receives tracks to be 
checked from the TFC 

        out: TFCout[]; //port used to reply to the TFC's 
queries 
        in: CFCin[]; //port that receives tracks to be 
checked from the CFC 
        out: CFCout[]; //port used to reply to the CFC's 
queries 
endsimple  
 

 
// SensorNet -- 
// 
// Pushes master track list to the SFP, receives tracks 
from the SFP, and handles 
// requests for tracks from other SFPs. 
// 
simple SensorNet  

    gates:  
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        out: SFPRequestout[]; //port used to push 
collaboratively fused tracks to the SFP 
        in: SFPRequestin[]; //port used to receive c. fused 
track requests from SFP 

        out: TrackListout; //port used to push the master 
track list to the TLC 
        in: SFPin[]; //port used to receive tracks from SFP 
endsimple  
 
 
// SFPSim -- 
// 

// Model of the Sensor Fusion Processor, with connections 
to multiple sensors and 
// one Sensor Net. 
// 
module SFPSim  
    parameters:  
                //parameters that involve only one entity 
        data_rate_RadarSensorToSFP : numeric, // the data 
rate between Radar Sensor and the SFP 
        RadarTrackSize : numeric, // size of an unfused 
radar track 
        RadarTrackDelay : numeric const, // delay between 
radar tracks being sent to the SFP 
        data_rate_IRSensorToSFP : numeric, // the data rate 
between IR Sensor and the SFP 
        IRTrackDelay : numeric const, // delay between IR 
tracks being sent to the SFP 
        IRTrackSize : numeric, // size of an unfused IR 
track 
                                
        //parameters that involve more than one entity 
        num_RadarSensors : numeric, // the number of Radar 
Sensors 
        num_IRSensors : numeric, // the number of IR 
Sensors 
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        num_Tracks : numeric, //the number of real tracks 
out there (ie: planes, rockets, missiles, etc) 
        data_rate_SFPtoSensorNet : numeric, // the data 
rate between the SFP and SensorNet 

        data_rate_Internal : numeric, // data rate of 
connections within the SFP 
        TrackListDelay : numeric, //amount of delay between 
sendings of the master track list 
        num_FusionRequests : numeric, // number of 
collaborative fusion requests from CFC (<=num_Tracks) 
        FusedTrackSize : numeric, // size of a firing 
solution quality fused track 

        Process_Time : numeric, // Generic handling time 
each module eats in handling a track 
        ListCheck : numeric, // Time Required to Check a 
Track against the List 
        Fusion : numeric; //Time Required to perform a 
Fusing Action 
    submodules:  
        TrackFusingCapsule: TrackFusingCapsule;  

            gatesizes:  
                SICin[num_RadarSensors+num_IRSensors], 
//port that receives tracks from SIC 
                CFCout[num_Tracks], //port used to push 
tracks to CFC 
                TLCout[num_RadarSensors+num_IRSensors], 
//port used to check target list 
                TLCin[num_RadarSensors+num_IRSensors]; 
//port used to receive answers from TLC 
            display: "p=79,59,r,70;i=comp;b=36,32"; 
        CollaborativeFusionCapsule: 
CollaborativeFusionCapsule;  
            gatesizes:  
                SICin, //port that receives tracks from SIC 
                TFCin[num_Tracks], //port that receives 
tracks from TFC 

                SNICout[num_Tracks], //port used to push 
tracks to SNIC 
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                TLCout[num_Tracks], //port used to check 
target list 
                TLCin[num_Tracks], //port used to receive 
answers from TLC 

                SNICRequestout[num_FusionRequests], //port 
used to request c. fused tracks from SN 
                SNICRequestin[num_FusionRequests]; //port 
used to receive c. fused tracks from SN 
            display: "p=136,155,r,70;i=comp;b=36,32"; 
        TrackListCapsule: TrackListCapsule;  
            gatesizes:  
                TrackListin, //port that receives the 
master target list from the SNIC 
                TFCin[num_RadarSensors+num_IRSensors], 
//port that receives tracks to be checked from the TFC 
                TFCout[num_RadarSensors+num_IRSensors], 
//port used to reply to the TFC's queries 
                CFCin[num_Tracks], //port that receives 
tracks to be checked from the CFC 
                CFCout[num_Tracks]; //port used to reply to 
the CFC's queries 
            display: "p=69,284,r,70;i=comp;b=36,32"; 
        SensorNet: SensorNet;  
            gatesizes:  
                SFPRequestout[num_FusionRequests], //port 
used to push collaboratively fused tracks to the SFP 
                SFPRequestin[num_FusionRequests], //port 
used to receive c. fused track requests from SFP 

                TrackListout, //port used to push the 
master track list to the TLC 
                SFPin[num_Tracks]; //port used to receive 
tracks from SFP 
            display: "p=375,291;i=router3;b=36,32"; 
        SensorNetInterfaceCapsule: 
SensorNetInterfaceCapsule;  
            gatesizes:  

                SNRequestout[num_FusionRequests], //port 
used to request collaboratively fused tracks from SN 
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                SNRequestin[num_FusionRequests], //port 
used to receive collaboratively fused tracks from SN 
                CFCRequestout[num_FusionRequests], //port 
used to pass collaboratively fused tracks to CFC 

                CFCRequestin[num_FusionRequests], //port 
used to receive requests from CFC for c. fused tracks 
                TrackListin, //port used to receive the 
master track list from SN 
                TrackListout, //port used to push the 
master track list to the TLC 
                CFCin[num_Tracks], //port used to receive 
tracks from CFC 

                SNout[num_Tracks]; //port used to push 
tracks to SN 
            display: "p=224,284;i=router;b=32,32"; 
        IRSensor: IRSensor[num_IRSensors]; // 
            display: 
"p=395,69,r,90;i=satellitesensoricon;b=75,97"; 
        SensorInterfaceCapsule: SensorInterfaceCapsule;  
            gatesizes:  

                TFCout[num_RadarSensors+num_IRSensors],  
                CFCout,  
                in[num_RadarSensors+num_IRSensors];  
            display: "p=227,60,r,80;i=router;b=32,32"; 
        RadarSensor: RadarSensor[num_RadarSensors];  
            display: 
"p=393,196,r,100;i=radarsensoricon;b=92,88"; 
    //see p43 of the manual for figuring out problems with 
ports (especially the [] parts) 
    connections:  
        //connect up the Radar Sensors to the SIC  
        for i=0..num_RadarSensors-1 do  
            RadarSensor[i].out --> delay 5ms --> 
SensorInterfaceCapsule.in[i];  
        endfor;  
        //connect up the IR Sensors to the SIC also 

        for i=0..num_IRSensors-1 do  
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            IRSensor[i].out --> delay 500ms --> 
SensorInterfaceCapsule.in[num_RadarSensors + i];  
        endfor;  
        //connect up the SIC to the TFC 

        for i=0..(num_RadarSensors+num_IRSensors)-1 do  
            SensorInterfaceCapsule.TFCout[i] --> delay 0ms 
--> TrackFusingCapsule.SICin[i];  
        endfor;  
        //connect up the SIC to the CFC 
        SensorInterfaceCapsule.CFCout --> delay 0ms --> 
CollaborativeFusionCapsule.SICin;  
                                                                                          

        //connect up the TFC with the TLC 
        for i=0..(num_RadarSensors+num_IRSensors)-1 do  
            TrackFusingCapsule.TLCout[i] --> delay 0ms --> 
TrackListCapsule.TFCin[i];  
        endfor;  
        for i=0..(num_RadarSensors+num_IRSensors)-1 do  
            TrackFusingCapsule.TLCin[i] <-- delay 0ms <-- 
TrackListCapsule.TFCout[i];  

        endfor;  
        //connect up the TFC with the CFC 
        for i=0..num_Tracks-1 do  
            TrackFusingCapsule.CFCout[i] --> delay 0ms --> 
CollaborativeFusionCapsule.TFCin[i];  
        endfor;  
 
        //connect up the CFC with the TLC 

        for i=0..num_Tracks-1 do  
            CollaborativeFusionCapsule.TLCout[i] --> delay 
0ms --> TrackListCapsule.CFCin[i];  
        endfor;  
        for i=0..num_Tracks-1 do  
            CollaborativeFusionCapsule.TLCin[i] <-- delay 
0ms <-- TrackListCapsule.CFCout[i];  
        endfor;  
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        //connect up the CFC with the SNIC 
        for i=0..num_FusionRequests-1 do  
            CollaborativeFusionCapsule.SNICRequestout[i] --
> delay 0ms --> SensorNetInterfaceCapsule.CFCRequestin[i];  

        endfor;  
        for i=0..num_FusionRequests-1 do  
            CollaborativeFusionCapsule.SNICRequestin[i] <-- 
delay 0ms <-- SensorNetInterfaceCapsule.CFCRequestout[i];  
        endfor;  
        for i=0..num_Tracks-1 do  
            CollaborativeFusionCapsule.SNICout[i] --> delay 
0ms --> SensorNetInterfaceCapsule.CFCin[i];  

        endfor;  
 
//connect up the SNIC with the SensorNet and TLC to pass 
the master track list through 
//all delays are based on a dedicated T-1 or faster line. 
        SensorNetInterfaceCapsule.TrackListin <-- delay 5ms 
<-- SensorNet.TrackListout;  
        SensorNetInterfaceCapsule.TrackListout --> delay 
5ms --> TrackListCapsule.TrackListin;  
        //connect up the SNIC with the SensorNet to request 
collaboratively fused tracks 
        for i=0..num_FusionRequests-1 do  
            SensorNetInterfaceCapsule.SNRequestout[i] --> 
delay 5ms --> SensorNet.SFPRequestin[i];  
        endfor;  
        for i=0..num_FusionRequests-1 do  

            SensorNetInterfaceCapsule.SNRequestin[i] <-- 
delay 5ms <-- SensorNet.SFPRequestout[i];  
        endfor;  
        //connect up the SNIC with the SensorNet to pass 
tracks to SensorNet 
        for i=0..num_Tracks-1 do  
            SensorNetInterfaceCapsule.SNout[i] --> delay 
5ms --> SensorNet.SFPin[i];  

        endfor;  
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    display: "p=18,18;b=273,301"; 
endmodule  
 
 

// 
// Instantiates a Sensor Fusion Processor. 
// 
network TheSFPSim : SFPSim // must match file name (e.g. 
test.ned) 
    parameters:  
        num_RadarSensors = input(4,                 "Number 
of Ground-Based Radar Sensors:_______________"),  

        num_IRSensors = input(2,                    "Number 
of Satellite-Based IR Sensors:_______________"),  
        num_Tracks = input (5,                      "Number 
of actual objects being tracked:_____________"),  
        data_rate_SFPtoSensorNet = input(45000000,  "Data 
Rate (bps) between SFP and SensorNet:__________"),  
        data_rate_Internal = input(1000000000,      "Data 
Rate (bps) between Capsules:___________________"),  

        FusedTrackSize = input(500,                 "Size 
(bits) of Fused Track:_________________________"),  
        data_rate_RadarSensorToSFP = input(45000000,"Data 
Rate (bps) between Radar Sensor and the SFP:___"),  
        RadarTrackSize = input(500,                 "Size 
(bits) of an Unfused Radar Track:______________"),  
        RadarTrackDelay = input(.5,                 "Delay 
(sec) between Radar Tracks sent to the SFP:___"),  

        data_rate_IRSensorToSFP = input(93000,      "Data 
Rate (bps) between IR Sensor and the SFP:______"),  
        IRTrackDelay = input (2,                    "Delay 
(sec) between IR tracks being sent to the SFP:"),  
        IRTrackSize = input (500,                   "Size 
(bits) of an unfused IR track:_________________"),  
        TrackListDelay = input(.1,                  "Delay 
(sec) between Master Track List broadcasts:___"),  

        num_FusionRequests = input(1,               "Number 
of collaborative fusion requests from CFC:___"),  
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        Process_Time = input(.000005,   
 "Time (sec) each Module takes to handle a 
track:_____"),  
        ListCheck = input(.0005,                    "Time 
(sec) to check a track against the List:_______"),  
        Fusion = input(.01,      
 "Time (sec) required to perform a Fusing 
Action:_____");  
                                                                                          
endnetwork 
 
//--------------------------------------------------------- 

// file: RadarSensor.cpp 
// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 14 Nov 2003 
// This is a generic radar sensor. 
//--------------------------------------------------------- 
 
#include "omnetpp.h" 

 
class RadarSensor : public cSimpleModule 
{ 
    Module_Class_Members(RadarSensor,cSimpleModule,16384) 
    virtual void activity(); 
}; 
Define_Module( RadarSensor ); 
void RadarSensor::activity() 

{ 
  int own_addr = gate( "out" )->toGate()->index(); 
  int track_size = parentModule()->par("RadarTrackSize"); 
  int num_tracks = parentModule()->par("num_Tracks"); 
  double delay = parentModule()->par("RadarTrackDelay"); 
  bool sim_start = true; 
    for(;;) 
    { 
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  if (!sim_start) 
  { 
         // keep an interval between batches of tracks 
being sent out 

      wait( delay ); 
  } 
  sim_start = false; 
  for(int i=0;i<num_tracks; i++) //send out one 
track per object out there. 
  { 
         // connection setup 
         ev << "Client " << name() << " " << own_addr 
<< " sending Radar Track of size " << track_size << " 
bits\n"; 
         cMessage *work = new cMessage( name()); 
         work->addPar("src") = own_addr; 
   work->addPar("fwd") = true; 
   work->setLength(track_size); 
   work->setTimestamp(); //puts a current 
time timestamp on it. 

         send( work, "out" ); 
  } 
    } 
} 
 
//--------------------------------------------------------- 
// file: IRSensor.cpp 
// author: Joel D. Babbitt 

// Thesis Work @ NPS 
// Date: 14 Nov 2003 
// This is a generic IR sensor. 
//--------------------------------------------------------- 
 
#include "omnetpp.h" 
 
class IRSensor : public cSimpleModule 
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{ 
    Module_Class_Members(IRSensor,cSimpleModule,16384) 
    virtual void activity(); 
}; 

 
Define_Module( IRSensor ); 
 
void IRSensor::activity() 
{ 
 
  int own_addr = gate( "out" )->toGate()->index(); 
  int track_size = parentModule()->par("IRTrackSize"); 

  int num_tracks = parentModule()->par("num_Tracks"); 
  double delay = parentModule()->par("IRTrackDelay"); 
  cOutVector resp_v("response_time"); 
  double response_time; 
  bool sim_start = true; 
 
    for(;;) 
    { 

  if (!sim_start) 
  { 
         // keep an interval between batches of tracks 
being sent out 
      wait( delay ); 
  } 
 
  sim_start = false; 

  for(int i=0;i<num_tracks; i++)  //send out one 
track per object out there. 
  { 
   // connection setup 
         ev << "Client " << name() << " " << own_addr 
<< " sending IR Track of size " << track_size << " bits\n"; 
         cMessage *work = new cMessage( name()); 
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         work->addPar("src") = own_addr; 
   work->addPar("fwd") = true; 
   work->setLength(track_size); 
   work->setTimestamp(); //puts a current 
time timestamp on it. 
   response_time = simTime(); 
   send( work, "out" ); 
  } 
    } 
} 
//--------------------------------------------------------- 
// file: SensorInterfaceCapsule.cpp 

// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 15 Nov 2003 
// The SensorInterfaceCapsule connects sensors with the SFP 
//--------------------------------------------------------- 
#include "omnetpp.h" 
class SensorInterfaceCapsule : public cSimpleModule 
{ 

    
Module_Class_Members(SensorInterfaceCapsule,cSimpleModule,1
6384) 
    virtual void activity(); 
}; 
Define_Module( SensorInterfaceCapsule ); 
void SensorInterfaceCapsule::activity() 
{ 

 double avg_utilization = 0.0; 
 double process_time = parentModule()-
>par("Process_Time"); 
 cOutVector resp_v("SIC utilization"); 
 int num_radarsensors = parentModule()-
>par("num_RadarSensors"); 
 int num_irsensors = parentModule()-
>par("num_IRSensors"); 
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 int num_sensors = num_radarsensors+num_irsensors; 
 
    for(;;) 
    { 

        // receive msg (implicit queueing!) 
        cMessage *msg = receive(); 
  // Make sure you put in some delay for handling 
of the message 
  wait(process_time); 
  avg_utilization = avg_utilization + process_time; 
  resp_v.record(avg_utilization/simTime()); 
 

  // if there is only one or less tracks in the 
simulation 
  if ( num_sensors  < 2 ) 
  { 
   // then send it to the CFC 
   ev << "Forwarding msg to CFC" << '\n'; 
   send( msg, "CFCout"); 
  }  

  else  
  { // else there's the possibility that it's a 
redundant track, so send it to the TFC 
   ev << "Relaying msg to TFC" << '\n'; 
   send( msg, "TFCout"); 
  } 
    } 
} 

//--------------------------------------------------------- 
// file: CollaborativeFusionCapsule.cpp 
// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 19 Nov 2003 
// The Collaborative Fusing Capsule within a Sensor Fusion 
Processor 
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//--------------------------------------------------------- 
 
#include "omnetpp.h" 
class CollaborativeFusionCapsule : public cSimpleModule 

{ 
    
Module_Class_Members(CollaborativeFusionCapsule,cSimpleModu
le,16384) 
    virtual void activity(); 
}; 
 
Define_Module( CollaborativeFusionCapsule ); 

 
void CollaborativeFusionCapsule::activity() 
{ 
    double avg_utilization = 0.0; 
 double process_time = parentModule()-
>par("Process_Time"); 
 int num_fusion_requests = parentModule()-
>par("num_FusionRequests"); 

 double fusion_time = parentModule()->par("Fusion"); 
    int fused_track_size = parentModule()-
>par("FusedTrackSize"); 
 cOutVector resp_v("CFC utilization"); 
 int num_tracks = parentModule()->par("num_Tracks"); 
 int num_radarsensors = (parentModule()-
>par("num_RadarSensors")); 
 int num_irsensors = (parentModule()-
>par("num_IRSensors")); 
 int num_sensors = num_radarsensors+num_irsensors; 
 double fusion_variable = 
(num_tracks/(num_sensors*num_tracks)); //watch out for 
divide by 0 errors 
 int dropped_tracks = 0; 
 int forwarded_tracks = 0; 
 int total_tracks = 0; //total tracks received 

 



193 

    for(;;) 
    { 
  cMessage *msg = receive(); 
  // Make sure you put in some delay for handling 
of the message 
  wait(process_time); 
  avg_utilization = avg_utilization + process_time; 
  resp_v.record(avg_utilization/simTime()); 
 
  total_tracks++; 
  int source = msg->par("src"); 
   

  if (msg->arrivedOn("SICin")) 
  { 
   if (source < num_fusion_requests) 
   { 
    msg->addPar("CFC") = true; 
   } 
   else 
   { 

    msg->addPar("CFC") = false; 
   } 
   send(msg, "TLCout"); 
  } 
 
  else if (msg->arrivedOn("TFCin")) 
  { 
   if (source < num_fusion_requests) 

   { 
    msg->addPar("CFC") = true; 
   } 
   else 
   { 
    msg->addPar("CFC") = false; 
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   } 
   send(msg, "TLCout"); 
  } 
 

  else if (msg->arrivedOn("SNICRequestin")) 
  { 
   msg->addPar("CFC") = false; 
   //Fuse it 
   wait(fusion_time); 
   // ensure the size is a fused track size 
   msg->setLength(fused_track_size); 
   //add a parameter, so it knows this was a 
collaboratively fused track 
   msg->addPar("ColFus"); 
   msg->par("ColFus") = true; 
   //push it out to SensorNet 
   send(msg, "SNICout"); 
  } 
 
  bool CFC = msg->par("CFC"); 

  if (msg->arrivedOn("TLCin")&& CFC) 
  { 
   //add a parameter, so it knows this was not 
a collaboratively fused track 
   msg->addPar("ColFus"); 
   msg->par("ColFus") = false; 
 
   //request better track from SensorNet 

   msg->setLength(50);  //THIS IS AN EMBEDDED 
PARAMETER!!! (not visible to the NED file) 
   send(msg, "SNICRequestout"); 
  } 
 
  else if (msg->arrivedOn("TLCin")&& !CFC) 
  { 
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   //add a parameter, so it knows this was not 
a collaboratively fused track 
   msg->addPar("ColFus"); 
   msg->par("ColFus") = false; 

 
   send(msg, "SNICout"); 
  } 
 } 
} 
 
//--------------------------------------------------------- 
// file: SensorNet.cpp 

// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 19 Nov 2003 
// The Sensor Net serves and receives work from the SFP. 
//--------------------------------------------------------- 
 
#include "omnetpp.h" 
 

class SensorNet : public cSimpleModule 
{ 
    Module_Class_Members(SensorNet,cSimpleModule,16384) 
    virtual void activity(); 
}; 
 
Define_Module( SensorNet ); 
 

void SensorNet::activity() 
{ 
 double tracks_received = 0.00000; 
 double colfus_tracks_received = 0.00000; 
 double list_delay = parentModule()-
>par("TrackListDelay"); 
 double sim_marker = 0.00000; 
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 int fused_track_size = parentModule()-
>par("FusedTrackSize"); 
 int num_tracks = parentModule()->par("num_Tracks"); 
    double avg_utilization = 0.00; 

 double process_time = parentModule()-
>par("Process_Time"); 
 cOutVector resp_v("SN.SFPCommCapsule Utilization"); 
 double total_StSNT = 0.00000; 
 double total_colfus_StSNT = 0.00000; 
 double avg_SensortoSensorNetTime = 0.00000; 
 double avg_colfus_SensortoSensorNetTime = 0.00000; 
 double colfus_SensortoSensorNetTime = 0.00000; 

 double SensortoSensorNetTime = 0.00000; 
 cOutVector resp_t("Normal Tracks Average Time, Sensors 
to SensorNet"); 
 cOutVector resp_c("ColFus Tracks Average Time, Sensors 
to SensorNet"); 
 
    for(;;) 
    { 

 
  //need to send out the TrackList to all SFPs 
periodically, without disrupting everything else 
  if (simTime()>sim_marker) 
  { 
   cMessage *listmsg = new cMessage( name() ); 
   listmsg-
>setLength(num_tracks*fused_track_size); 

   listmsg->addPar("ColFus") = false; 
   scheduleAt(simTime()+list_delay, listmsg); 
   sim_marker = simTime()+list_delay; 
   ev << "Track List prepared for Broadcast" << 
'\n'; 
  } 
 
        // receive msg (implicit queueing!) 
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        cMessage *msg = receive(); 
  // Make sure you put in some delay for handling 
of the message 
  wait(process_time); 

  avg_utilization = avg_utilization + process_time; 
  resp_v.record(avg_utilization/simTime()); 
 
  if(msg->isSelfMessage()) 
  { 
   ev << "Size of Track List = " << msg-
>length() << '\n'; 
   ev << "TRACK LIST BROADCAST" << '\n'; 

   send(msg, "TrackListout"); 
  } 
 
  bool ColFus = msg->par("ColFus"); 
 
  if(msg->arrivedOn("SFPin")&&!ColFus) 
  { 
   tracks_received++; 

   simtime_t temp = msg->timestamp(); 
   ev << "Original Timestamp on the message = " 
<< temp << '\n'; 
   simtime_t temp2 = simTime(); 
   ev << "Timestamp at the SensorNet = " << 
temp2 << '\n'; 
   SensortoSensorNetTime = temp2 - temp; 
   ev << "SensortoSensorNetTime value = " << 
SensortoSensorNetTime << '\n'; 
   total_StSNT = total_StSNT + 
SensortoSensorNetTime; 
   avg_SensortoSensorNetTime = 
total_StSNT/tracks_received; 
   ev << "avg_SensortoSensorNetTime value = " 
<< avg_SensortoSensorNetTime << '\n'; 
   resp_t.record(avg_SensortoSensorNetTime); 
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   delete msg; 
  } 
  else if (msg->arrivedOn("SFPin")&&ColFus) 
  { 

   colfus_tracks_received++; 
   simtime_t tempA = msg->timestamp(); 
   ev << "COLFUS: Original Timestamp on the 
message = " << tempA << '\n'; 
   simtime_t tempB = simTime(); 
   ev << "COLFUS: Timestamp at the SensorNet = 
" << tempB << '\n'; 
   colfus_SensortoSensorNetTime = tempB - 
tempA; 
   ev << "colfus_SensortoSensorNetTime value = 
" << colfus_SensortoSensorNetTime << '\n'; 
   total_colfus_StSNT = total_colfus_StSNT + 
colfus_SensortoSensorNetTime; 
   avg_colfus_SensortoSensorNetTime = 
total_colfus_StSNT/colfus_tracks_received; 
   ev << "avg_colfus_SensortoSensorNetTime 
value = " << avg_colfus_SensortoSensorNetTime << '\n'; 
  
 resp_c.record(avg_colfus_SensortoSensorNetTime); 
   delete msg; 
  } 
 
  else if(msg->arrivedOn("SFPRequestin")) 
  { 

   msg->setLength(fused_track_size); 
   //send the message 
   send(msg, "SFPRequestout"); 
  } 
    } 
} 
//---------------------------------------------------------
---- 

// file: SensorNetInterfaceCapsule.cpp 
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// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 19 Nov 2003 
// This module connects the SFP to the SensorNet. 

//---------------------------------------------------------
---- 
 
#include "omnetpp.h" 
 
class SensorNetInterfaceCapsule : public cSimpleModule 
{ 
    
Module_Class_Members(SensorNetInterfaceCapsule,cSimpleModul
e,16384) 
    virtual void activity(); 
}; 
 
Define_Module( SensorNetInterfaceCapsule ); 
 
void SensorNetInterfaceCapsule::activity() 

{ 
  double avg_utilization = 0.0; 
  double process_time = parentModule()-
>par("Process_Time"); 
  cOutVector resp_v("SNIC Utilization"); 
 
  long total_bits = 0; 
  double network_util; 

  cOutVector resp_n("Network utilization"); 
 
    for(;;) 
    { 
        // receive msg (implicit queueing!) 
        cMessage *msg = receive(); 
  // Make sure you put in some delay for handling 
of the message 
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  wait(process_time); 
  avg_utilization = avg_utilization + process_time; 
  resp_v.record(avg_utilization/simTime()); 
   

  if (msg->arrivedOn("CFCin")) 
  { 
   send(msg, "SNout"); 
  } 
  else if (msg->arrivedOn("CFCRequestin")) 
  { 
   send(msg, "SNRequestout"); 
  } 

  else if (msg->arrivedOn("SNRequestin")) 
  { 
   send(msg, "CFCRequestout"); 
  } 
  else if (msg->arrivedOn("TrackListin")) 
  { 
   send(msg, "TrackListout"); 
  } 

  else if (msg->arrivedOn("CFCin")) 
  { 
   send(msg, "SNout"); 
  } 
 
//  if (source == server_add)   
//  { 
//    total_bits = total_bits + reply_size; 

//    network_util = total_bits / (simTime() * 
data_rates); 
//    if (network_util > 1.0) network_util = 1.0; 
//    resp_n.record(network_util); 
//  } 
 } 
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} 
//--------------------------------------------------------- 
// file: TrackFusingCapsule.cpp 
// author: Joel D. Babbitt 

// Thesis Work @ NPS 
// Date: 15 Nov 2003 
// The Track Fusing Capsule within a Sensor Fusion 
Processor 
//--------------------------------------------------------- 
 
#include "omnetpp.h" 
 

class TrackFusingCapsule : public cSimpleModule 
{ 
    
Module_Class_Members(TrackFusingCapsule,cSimpleModule,16384
) 
    virtual void activity(); 
}; 
 

Define_Module( TrackFusingCapsule ); 
 
void TrackFusingCapsule::activity() 
{ 
    double avg_utilization = 0.0; 
 double process_time = parentModule()-
>par("Process_Time"); 
 double fusion_time = parentModule()->par("Fusion"); 

    int fused_track_size = parentModule()-
>par("FusedTrackSize"); 
 cOutVector resp_v("TFC utilization"); 
 double num_tracks = parentModule()->par("num_Tracks"); 
 int num_radarsensors = (parentModule()-
>par("num_RadarSensors")); 
 int num_irsensors = (parentModule()-
>par("num_IRSensors")); 
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 double num_sensors = num_radarsensors+num_irsensors; 
 double fusion_variable = 0.000; 
 double random_num; 
 int dropped_tracks = 0; 

 int forwarded_tracks = 0; 
 int total_tracks = 0; //total tracks received 
    int own_addr = gate( "CFCout" )->toGate()->index(); 
 
    for(;;) 
    { 
  cMessage *msg = receive(); 
  // Make sure you put in some delay for handling 
of the message 
  wait(process_time); 
  avg_utilization = avg_utilization + process_time; 
  resp_v.record(avg_utilization/simTime()); 
 
  fusion_variable = (1/num_sensors); //watch out 
for divide by 0 errors 
  

  if(total_tracks<num_tracks) //this lets the first 
track through for each actual object out there. 
  { 
   fusion_variable = 1.000; 
  } 
 
 
  if (msg->arrivedOn("SICin")) 

  { 
   ev << "TFC --> TLC" << '\n'; 
   send(msg, "TLCout"); 
  } 
  else if (msg->arrivedOn("TLCin")) 
  { 
   total_tracks++; 
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   random_num = uniform(.01,1); //we're going 
to drop all but fusion variable % of messages. 
 
   //let's see what the variables 
are!************** 
   ev << "TrackFusingCapsule, deciding if we 
should fuse or correlate" <<'\n'; 
   ev << "Here's the Random Number --> " << 
random_num <<'\n'; 
   ev << "Here's the Fusion Variable --> " << 
fusion_variable << '\n'; 
   //If the Random Number is larger, it's 
correlated (dropped) 
   //Elsewise, it's fused with the correlated 
tracks and forwarded 
 
   if (random_num > fusion_variable) //need to 
drop the message and wait for the next one. 
   { 
    ev << "@@TFC Dropping the message!@@" 
<< '\n'; 
    delete msg; 
    dropped_tracks++; 
   } 
   else  //fuse, then forward the track to the 
Collaborative Fusion Capsule 
   {  
 

    ev << "@@TFC Fusing the message!@@" << 
'\n'; 
 
    //Note, the actual fusion request is 
passed to an internal capsule, clearing the 
    //TFC to handle other incoming tracks.  
This is modeled by subtracting fusion_time 
    //from the fused message's timestamp.  
This shows the time delay in the end. 
    simtime_t temp = msg->timestamp(); 
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    if (temp>fusion_time) 
    { 
     temp = temp - fusion_time; 
    } 

    msg->setTimestamp(temp); 
 
    // change the size to a fused track 
size 
    msg->setLength(fused_track_size); 
 
    ev << "TFC --> CFC" << '\n'; 
    // forward the track 

          send(msg, "CFCout"); 
    forwarded_tracks++; 
   } 
  } 
  else 
  { 
   ev << "***ERROR: TFC did not handle 
message!***"; 

  } 
 } 
} 
//--------------------------------------------------------- 
// file: TrackListCapsule.cpp 
// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 14 Nov 2003 

// The Track List Capsule keeps track of the track list 
// for the SFP.  
//--------------------------------------------------------- 
 
#include "omnetpp.h" 
 
class TrackListCapsule : public cSimpleModule 
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{ 
    
Module_Class_Members(TrackListCapsule,cSimpleModule,16384) 
    virtual void activity(); 

}; 
 
Define_Module( TrackListCapsule ); 
 
void TrackListCapsule::activity() 
{ 
    double avg_utilization = 0.0; 
 double process_time = parentModule()-
>par("Process_Time"); 
 double check_time = parentModule()->par("ListCheck"); 
 cOutVector resp_v("TLC Utilization"); 
 int num_tracks = parentModule()->par("num_Tracks"); 
 
 for(;;) 
    { 
         

  cMessage *msg = receive(); 
  // Make sure you put in some delay for handling 
of the message 
  wait(process_time); 
  avg_utilization = avg_utilization + process_time; 
  resp_v.record(avg_utilization/simTime()); 
 
  if (msg->arrivedOn("TFCin")) 

  { 
   ev << "TrackListCapsule processing msg from 
TFCin" << '\n'; 
 
   //Put in check time for checking the list 
   wait(check_time); 
   avg_utilization = avg_utilization + 
check_time; 
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   resp_v.record(avg_utilization/simTime()); 
 
   send(msg, "TFCout"); 
  } 

  else if (msg->arrivedOn("CFCin")) 
  { 
   ev << "TrackListCapsule processing msg from 
CFCin" << '\n'; 
   wait(check_time); 
 
   //Put in check time for checking the list 
   wait(check_time); 

   avg_utilization = avg_utilization + 
check_time; 
   resp_v.record(avg_utilization/simTime()); 
 
   send(msg, "CFCout"); 
  } 
  else if (msg->arrivedOn("TrackListin")) 
  { 

   ev << "TrackListCapsule processing msg from 
TrackListin" << '\n'; 
   //note, this causes minimal delay, as it 
goes to the inactive Track Registry 
   //then, after the inactive comes on line, it 
is given to the formerly active TR. 
 
   //This is an estimated service delay to 
switch between the active and semi-active TRs. 
   wait(process_time); 
   avg_utilization = avg_utilization + 
process_time; 
   resp_v.record(avg_utilization/simTime()); 
 
   delete msg; 
  } 
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    } 
} 
 
B. SENSOR NET SIMULATION. 

This simulation was a follow on to our SFP Simulation work.  

It is complete and functional except for the BMC2 

generating the firing order correctly and sending it 

through the PHIC à TCC à TRC à TSC Chain and the WP à TSC 

à SFPIC Chain.  This can well serve as a basis for analysis 

of different architectural concepts for the Sensor Net. 

 
//---------------------------------------------------------
---- 
// file: SensorNetSim.ned 
// author: Joel D. Babbitt 
// Thesis Work @ NPS 

// Date: 25 Nov 2003 
//---------------------------------------------------------
---- 
 
 
// RadarSensor -- 
// 
// A ground based radar sensor which sends cues to the 
SensorNet. 
// 
simple RadarSensor  
    gates:  
        out: out;  
endsimple  
 
 

// IRSensor -- 
// 
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// A satellite based IR sensor which sends cues to the 
SensorNet. 
// 
simple IRSensor  

    gates:  
        out: out;  
endsimple  
 
 
// Sensor Controlling Authority -- 
// 
// The entity which issues orientation commands to the 
individual sensors 
// 
simple SCA  
    gates:  
        in: in; //this is where the SCA receives the master 
track list 
endsimple  
 

 
// Competent Authority -- 
// 
// Any authority which can competently give cues to 
SensorNet 
// 
simple CA  
    gates:  

        out: out;  
endsimple  
 
 
// Remote SensorNet -- 
// 
// A peer sensornet to our sensornet. 
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// 
simple RemoteSN  
    gates:  
        in: in; //receives the master track list 
(abstracted version) from our SensorNet 
        out: out; //pushes its abstracted master track list 
to our SensorNet 
        out: Cueout; //pushes cues to the cueing capsule of 
our SensorNet 
endsimple  
 
 

// SensorFusionProcessor -- 
// 
// Responsible for pushing tracks to the Sensor Net. 
Requests tracks for 
// Collaborative Fusion from SensorNet. 
// 
simple SFP  
    gates:  

        out: SNRequestout[]; //port used to request 
collaboratively fused tracks from SN 
        in: SNRequestin[]; //port used to receive 
collaboratively fused tracks from SN 
        in: TrackListin; //port used to receive the master 
track list from SN 
        out: SNout[]; //port used to push tracks to SN 
endsimple  

 
 
// SFP Interface Capsule -- 
// 
// Pushes master track list to the SFP, receives tracks 
from the SFP, and handles 
// requests for tracks from other SFPs. 
// 
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simple SFPIC  
    gates:  
        out: SFPRequestout[]; //port used to push 
collaboratively fused tracks to the SFP 

        in: SFPRequestin[]; //port used to receive c. fused 
track requests from SFP 
        in: TrackListin; //port used to receive the master 
track list from the TSC 
        out: TrackListout[]; //port used to push the master 
track list to the SFPs 
        in: SFPin[]; //port used to receive tracks from 
SFPs, # = # of SFPs 

        out: TCCout[]; //port used to push tracks to the 
TCC, # = # of SFPs 
        out: WPout[]; //port used to push tracks to the 
WPIC 
        in: Shortin; //port used to receive short orders 
from the TSC 
endsimple  
 

 
// Track Correlation Capsule 
//  
//  
// 
simple TCC  
    gates:  
        in: TRCin; //receives the master track list from 
the TRC 
        out: TRCout[]; //pushes modifications (tracks) to 
the TRC, # of ports = # of tracks 
        in: SFPICin[]; //receives tracks from the SFP 
Interface Capsule 
        in: PHICBMC2in[]; //receives modifications to 
tracks  
        in: PHICPSNin[]; //receives abstracted master track 
lists 
        in: Cuein[]; //# = # of tracks 
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        out: Cueout[]; //# = # of tracks 
endsimple  
 
 

// Cueing Capsule 
// 
// 
// 
simple CC  
    gates:  
        in: Cuein[]; //# of ports = Sensors + Competent 
Authorities + Peer SensorNets 

        out: TCCout[]; //# of ports = # of tracks 
        in: TCCin[]; //# of ports = # of tracks 
        out: SCAout[]; //# of ports = # of SCAs 
endsimple  
 
 
// Track Registry Capsule 
// 

// 
// 
simple TRC  
    gates:  
        in: TCCin[]; //receives modifications (tracks) from 
the TCC, # of ports = # of tracks 
        out: TCCout; //pushes master track list to TCC 
        out: TSCout; //pushes master track list to TSC 

endsimple  
 
 
// Track Server Capsule 
// 
// 
// 
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simple TSC  
    gates:  
        in: TRCin; //receives master track list from TRC 
        in: WPICin[]; //receives requests from WPICs for 
tracks, # = # of WPs 
        out: Shortout; //passes short commands to the SFPIC 
        out: TrackListout; //passes the master track list 
to the WPIC 
        out: BMC2out; //passes the master track list to the 
PHIC 
        out: PSNout; //passes the abstracted track list to 
the PHIC 

endsimple  
 
 
 
// Peer/Higher Interface Capsule 
// 
// 
// 

simple PHIC  
    gates:  
        in: MasterListin;  
        in: AbstractListin;  
        out: TCCBMC2out[]; //used to pass BMC2 
modifications to the TCC  
        out: TCCPSNout[]; //used to pass abstracted master 
track lists from PSNs 

        in: BMC2in[]; //used to receive BMC2 modifications, 
# of ports = # of tracks 
        out: BMC2out; //used to pass the Master Track List 
to the BMC2 
        out: PSNout[]; //used to pass abstracted master 
track lists to Peer SensorNets 
        in: PSNin[]; //used to receive abstracted master 
track lists from Peer SensorNets 

endsimple  
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// BMC2 -- 
//  

// The battle management (what the army/navy/marines call 
command and control) element. 
// 
simple BMC2  
    gates:  
        in: in; //receives master track list from the 
SensorNet 
        out: out[]; //pushes its modifications back to the 
SensorNet, # of ports = # of tracks 
        out: WPout[]; //pushes firing orders to the Weapons 
Platforms 
endsimple  
 
 
// Weapon Platform 
//  

// A weapon's controlling entity.  It requests firing 
solution quality tracks from the SensorNet 
// so that it may fire on tasked targets. 
// 
simple WP  
    gates:  
        in: in; //receives the firing solution quality 
track from the SensorNet 

        out: out; //requests the firing solution quality 
track from the SensorNet 
        in: BMC2in; //receives firing orders from the BMC2 
endsimple  
 
 
// Weapon Platform Interface Capsule 
// 
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// 
// 
simple WPIC  
    gates:  

        out: WPout[]; //port used to pass tracks to WPs 
        in: WPin[]; //port used to receive requests from 
the WPs 
        out: TrackRequestout[]; //port used to request a 
track (to TSC), # of ports = # of requests 
        in: TrackRequestin[]; //port used to receive 
requested tracks (from SFPIC) 
endsimple  

 
 
// SensorNetSim -- 
// 
// Model of the SensorNet, with connections to all 
interacting devices 
// 
module SensorNetSim  

    parameters:  
        //parameters that involve only one entity 
        data_rate_RadarSensorToSFP : numeric, // the data 
rate between Radar Sensor and the SFP 
        RadarTrackSize : numeric, // size of an unfused 
radar track 
        data_rate_IRSensorToSFP : numeric, // the data rate 
between IR Sensor and the SFP 

        IRTrackSize : numeric, // size of an unfused IR 
track 
        data_rate_SFPtoSensorNet : numeric, // the data 
rate between the SFP and SensorNet 
        ClassDelay : numeric, // time required to classify 
a track as either target or not 
        TrackDelay : numeric, // time required to get a 
track to SensorNet (from SFPSim). 
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        //parameters that involve more than one entity 
        num_RadarSensors : numeric, // the number of Radar 
Sensors 
        num_IRSensors : numeric, // the number of IR 
Sensors 
        num_SFPs : numeric, // the number of SFPs in the 
simulation 
        num_SCAs : numeric, // the number of Sensor 
Controlling Authorities 
        num_CAs : numeric, // the number of Competent 
Authorities 
        num_PSNs : numeric, // the number of Peer 
SensorNets 
        num_WPs : numeric, // the number of Weapon 
Platforms 
        num_Tracks : numeric, // the number of actual 
tracks out there (ie: planes, missiles, etc) 
        num_Targets : numeric, // the number of targets out 
there (ie: enemy rockets, missiles, etc) 
        num_FusionRequests : numeric, // maximum number of 
collaborative fusion requests per SFP 
        FusedTrackSize : numeric, // size of a firing 
solution quality fused track 
        Process_Time : numeric, // Generic handling time 
each module eats in handling a track 
        ListCheck : numeric, // Time Required to Check a 
Track against the List 
        Fusion : numeric, //Time Required to perform a 
Fusing Action 
                           
                          //parameters for the SensorNet 
        data_rate_Internal : numeric, // data rate of 
connections within the SFP 
        TrackListDelay : numeric; //amount of delay between 
sendings of the master track list 
                                   

    submodules:  
        RadarSensor: RadarSensor[num_RadarSensors];  
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            display: 
"p=361,492,r,100;i=radarsensoricon;b=92,88"; 
        IRSensor: IRSensor[num_IRSensors];  
            display: 
"p=371,373,r,90;i=satellitesensoricon;b=75,97"; 
        SCA: SCA[num_SCAs];  
            display: "p=363,285,r,90;i=telnet;b=38,28"; 
        CA: CA[num_CAs];  
            display: "p=51,477,r,90;i=telnet;b=38,28"; 
        RemoteSN: RemoteSN[num_PSNs];  
            display: "p=355,225,r,90;i=router;b=32,32"; 
        SFP: SFP[num_SFPs];  

            gatesizes:  
                SNRequestout[num_Tracks], //port used to 
request collaboratively fused tracks from SN 
                SNRequestin[num_Tracks], //port used to 
receive collaboratively fused tracks from SN 
                SNout[num_Tracks]; //port used to push 
tracks to SN 
            display: "p=51,25,r,90;i=cogwheel;b=32,30"; 

        SFPIC: SFPIC;  
            gatesizes:  
                SFPRequestout[num_Tracks*num_SFPs], //port 
used to push collaboratively fused tracks to the SFP 
                SFPRequestin[num_Tracks*num_SFPs], //port 
used to receive c. fused track requests from SFP 
                TrackListout[num_SFPs], //port used to push 
the master track list to the SFPs 

                SFPin[num_SFPs*num_Tracks], //port used to 
receive tracks from SFPs 
                TCCout[num_SFPs*num_Tracks], //port used to 
push tracks to the TCC, # = # of SFPs 
                WPout[num_Targets]; //port used to push 
tracks to the WPIC 
            display: "p=119,195,r,70;i=comp;b=36,32"; 
        TCC: TCC;  

            gatesizes:  
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                TRCout[num_Tracks], //pushes modifications 
(tracks) to the TRC, # of ports = # of tracks 
                SFPICin[num_Tracks * num_SFPs], //receives 
tracks from the SFP Interface Capsule 

                PHICBMC2in[num_Targets], //receives 
modifications to tracks 
                PHICPSNin[num_PSNs], //receives abstracted 
master track lists 
                Cuein[num_Tracks], //# = # of tracks 
                Cueout[num_Tracks]; //# = # of tracks 
            display: "p=79,311,r,70;i=comp;b=36,32"; 
        CC: CC;  

            gatesizes:  
                Cuein[num_RadarSensors + num_IRSensors + 
num_CAs + num_PSNs],  
                TCCout[num_Tracks], //# of ports = # of 
tracks 
                TCCin[num_Tracks], //# of ports = # of 
tracks 
                SCAout[num_SCAs]; //# of ports = # of SCAs 

            display: "p=227,407,r,70;i=comp;b=36,32"; 
        TRC: TRC;  
            gatesizes:  
                TCCin[num_Tracks]; //receives modifications 
(tracks) from the TCC, # of ports = # of tracks 
            display: "p=163,259,r,70;i=comp;b=36,32"; 
        TSC: TSC;  
            gatesizes:  

                WPICin[num_Targets]; //receives requests 
from WPICs for tracks, # = # of Targets 
            display: "p=247,259,r,70;i=comp;b=36,32"; 
        PHIC: PHIC;  
            gatesizes:  
                TCCBMC2out[num_Targets], //used to pass 
BMC2 modifications to the TCC  
                TCCPSNout[num_PSNs], //used to pass 
abstracted master track lists from PSNs 
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                BMC2in[num_Targets], //used to receive BMC2 
modifications, # of ports = # of tracks 
                PSNout[num_PSNs], //used to pass abstracted 
master track lists to Peer SensorNets 

                PSNin[num_PSNs]; //used to receive 
abstracted master track lists from Peer SensorNets 
            display: "p=235,347,r,70;i=comp;b=36,32"; 
        BMC2: BMC2;  
            gatesizes:  
                out[num_Targets], //pushes its 
modifications back to the SensorNet, # of ports = # of 
targets 

                WPout[num_WPs]; //pushes firing orders to 
WPs 
            display: "p=331,173,r,90;i=telnet;b=38,28"; 
        WP: WP[num_WPs];  
            display: 
"p=219,97,r,90;i=weaponplatformicon;b=39,73"; 
        WPIC: WPIC;  
            gatesizes:  

                WPout[num_WPs], //port used to pass tracks 
to WPs 
                WPin[num_WPs], //port used to receive 
requests from the WPs 
                TrackRequestout[num_Targets], //port used 
to request a track (to TSC), # of ports = # of requests 
                TrackRequestin[num_Targets]; //port used to 
receive requested tracks (from SFPIC) 

            display: "p=255,183,r,70;i=comp;b=36,32"; 
    //see p43 of the manual for figuring out problems with 
ports (especially the [] parts) 
    connections:  
                  
                 //connect up the RadarSensors to the CC 
        for i=0..num_RadarSensors-1 do  
            RadarSensor[i].out --> delay 5ms --> 
CC.Cuein[i];  
        endfor;  
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        //connect up the IR Sensors to the CC also 
        for i=0..num_IRSensors-1 do  
            IRSensor[i].out --> delay 500ms --> 
CC.Cuein[num_RadarSensors + i];  
        endfor;  
 
        //connect up the SCAs to the CC 
        for i=0..num_SCAs-1 do  
            SCA[i].in <-- delay 5ms <-- CC.SCAout[i];  
        endfor;  
 

        //connect up the CAs to the CC 
        for i=0..num_CAs-1 do  
            CA[i].out --> delay 5ms --> 
CC.Cuein[num_RadarSensors + num_IRSensors + i];  
        endfor;  
 
        //connect up the Remote SensorNets 
        for i=0..num_PSNs-1 do  

            RemoteSN[i].in <-- delay 50ms <-- 
PHIC.PSNout[i];  
        endfor;  
        for i=0..num_PSNs-1 do  
            RemoteSN[i].out --> delay 50ms --> 
PHIC.PSNin[i];  
        endfor;  
 

        for i=0..num_PSNs-1 do  
            RemoteSN[i].Cueout --> delay 50ms --> 
CC.Cuein[num_RadarSensors + num_IRSensors + num_CAs + i];  
        endfor;  
 
        //connect up the BMC2 
        BMC2.in <-- delay 5ms <-- PHIC.BMC2out;  
        for i=0..num_Targets-1 do  
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            BMC2.out[i] --> delay 5ms --> PHIC.BMC2in[i];  
        endfor;  
        for i=0..num_WPs-1 do  
            BMC2.WPout[i] --> delay 5ms --> WP[i].BMC2in;  

        endfor;  
 
        //connect up the Weapons Platforms 
        for i=0..num_WPs-1 do  
            WP[i].out --> delay 5ms --> WPIC.WPin[i];  
        endfor;  
        for i=0..num_WPs-1 do  
            WP[i].in <-- delay 5ms <-- WPIC.WPout[i];  

        endfor;  
 
        //connect up the SFPs 
        for i=0..num_SFPs-1, j=0..num_Tracks-1 do  
            SFP[i].SNRequestout[j] --> delay 5ms --> 
SFPIC.SFPRequestin[(i*num_Tracks)+j];  
        endfor;  
        for i=0..num_SFPs-1, j=0..num_Tracks-1 do  

            SFP[i].SNRequestin[j] <-- delay 5ms <-- 
SFPIC.SFPRequestout[(i*num_Tracks)+j];  
        endfor;  
        for i=0..num_SFPs-1 do  
            SFP[i].TrackListin <-- delay 5ms <-- 
SFPIC.TrackListout[i];  
        endfor;  
        for i=0..num_SFPs-1, j=0..num_Tracks-1 do  

            SFP[i].SNout[j] --> delay 5ms --> 
SFPIC.SFPin[(i*num_Tracks)+j];  
        endfor;  
 
        //connect up the SFPIC 
        SFPIC.TrackListin <-- delay 0ms <-- 
TSC.TrackListout;  
        SFPIC.Shortin <-- delay 0ms <-- TSC.Shortout;  
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        for i=0..(num_SFPs*num_Tracks)-1 do  
            SFPIC.TCCout[i] --> delay 0ms --> 
TCC.SFPICin[i];  
        endfor;  

        for i=0..num_Targets-1 do  
            SFPIC.WPout[i] --> delay 0ms --> 
WPIC.TrackRequestin[i];  
        endfor;  
 
        //connect up the WPIC 
        for i=0..num_Targets-1 do  
            WPIC.TrackRequestout[i] --> delay 0ms --> 
TSC.WPICin[i];  
        endfor;  
 
        //connect up the PHIC 
        PHIC.MasterListin <-- delay 0ms <-- TSC.BMC2out;  
        PHIC.AbstractListin <-- delay 0ms <-- TSC.PSNout;  
        for i=0..num_Targets-1 do  
            PHIC.TCCBMC2out[i] --> delay 0ms --> 
TCC.PHICBMC2in[i];  
        endfor;  
        for i=0..num_PSNs-1 do  
            PHIC.TCCPSNout[i] --> delay 0ms --> 
TCC.PHICPSNin[i];  
        endfor;  
 
        //connect up the CC 

        for i=0..num_Tracks-1 do  
            CC.TCCout[i] --> delay 0ms --> TCC.Cuein[i];  
        endfor;  
        for i=0..num_Tracks-1 do  
            CC.TCCin[i] <-- delay 0ms <-- TCC.Cueout[i];  
        endfor;  
 
        //connect up the TCC 
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        TCC.TRCin <-- delay 0ms <-- TRC.TCCout;  
        for i=0..num_Tracks-1 do  
            TCC.TRCout[i] --> delay 0ms --> TRC.TCCin[i];  
        endfor;  

 
        //connect up the TRC 
        TRC.TSCout --> delay 0ms --> TSC.TRCin;  
                                                 
    display: "p=34,162;b=249,277"; 
endmodule  
 
 

// 
// Instantiates a SensorNet 
// 
network TheSensorNetSim : SensorNetSim // must match file 
name (e.g. test.ned) 
    parameters:  
        data_rate_RadarSensorToSFP = input(1440000, "Data 
rate (bps) between Radar Sensors and the SFP:_____"),  

        RadarTrackSize = input(1024,                "Size 
(bits) of an unfused radar track:_________________"),  
        data_rate_IRSensorToSFP = input(93000,      "Data 
rate (bps) between IR Sensor and the SFP:_________"),  
        IRTrackSize = input(256,                    "Size 
(bits) of an unfused IR track:____________________"),  
        data_rate_SFPtoSensorNet = input(45000000,  "The 
data rate (bps) between the SFP and SensorNet:_____"),  

        ClassDelay = input(.005,                    
"Classification Delay (sec) to decide target/not 
target:_____"),  
        TrackDelay = input(.2,     
 "SFP Time Delay (sec) for Sensor to 
SensorNet:__________"),  
        num_RadarSensors = input(1,                 "Number 
of Ground-Based Radar Sensors:________________"),  
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        num_IRSensors = input(1,    
 "Number of Satellite-Based IR 
Sensors:________________"),  
        num_SFPs = input(1,                         "Number 
of SFPs in the simulation:______________________"),  
        num_SCAs = input(1,                         "Number 
of Sensor Controlling Authorities:______________"),  
        num_CAs = input(1,                          "Number 
of Competent Authorities:_____________________"),  
        num_PSNs = input(1,                         "Number 
of Peer SensorNets:_________________________"),  
        num_WPs = input(1,                          "Number 
of Weapon Platforms:________________________"),  
        num_Tracks = input(2,                       "Number 
of actual Tracks (ie: planes, missiles, etc):______"),  
        num_Targets = input(2,                     "Number 
of actual Targets (ie: enemy rockets, missiles):___"),  
        num_FusionRequests = input(1,               
"Maximum number of ColFus requests per SFP:_____________"),  
        FusedTrackSize = input(1152,                "Size 
of a firing solution quality fused track:___________"),  
        Process_Time = input(.000005,               "Time 
(sec) each Module takes to handle a track/target:_"),  
        ListCheck = input(.0005,                    "Time 
(sec) to check a track against the List:__________"),  
        Fusion = input(.01,      
 "Time (sec) required to perform a Fusing 
Action:________"),  

        data_rate_Internal = input(1000000000,      "Data 
Rate (bps) between Capsules:____________________"),  
        TrackListDelay = input(.1,                  "Delay 
(sec) between Master Track List broadcasts:______");  
endnetwork  
//---------------------------------------------------------
---- 
// file: BMC2.cpp 

// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 29 Nov 2003 
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// The BMC2 controls which tracks are targets and which are 
not 
//---------------------------------------------------------
---- 

 
#include "omnetpp.h" 
 
class BMC2 : public cSimpleModule 
{ 
    Module_Class_Members(BMC2,cSimpleModule,16384) 
    virtual void activity(); 
}; 

 
Define_Module( BMC2 ); 
 
void BMC2::activity() 
{ 
 int num_tracks = parentModule()->par("num_Tracks"); 
 int num_targets = parentModule()->par("num_Targets"); 
 int num_radarsensors = parentModule()-
>par("num_RadarSensors"); 
 int num_irsensors = parentModule()-
>par("num_IRSensors"); 
 int num_sensors = num_radarsensors+num_irsensors; 
 int num_wps = parentModule()->par("num_WPs"); 
 double avg_utilization = 0.0; 
 double process_time = parentModule()-
>par("Process_Time"); 

 double classification_delay = parentModule()-
>par("ClassDelay"); 
 cOutVector resp_v("BMC2 utilization"); 
 
 int target_list[100]; 
 
 for (int t=0; t<100;t++) 
 { 
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  target_list[t] = -1; 
 } 
 
    for(;;) 

    { 
   // receive msg (implicit queueing!) 
   cMessage *msg = receive(); 
   // Make sure you put in some delay for 
handling of the message 
   wait(process_time); 
   avg_utilization = avg_utilization + 
process_time; 

   resp_v.record(avg_utilization/simTime()); 
 
   if(msg->hasPar("tlp")) 
   { 
 
    int *target = (int *) msg-
>getObject("TargetList"); 
    //This gives us the target array that 
we will now break down. 
    for (int i=0; i<num_targets; i++) 
    { 
     if (target_list[i] == -1) 
     { 
      //Since all this is done at 
the beginning of the simulation, it's  
      //impossible to model it 
offline by decrementing a timestamp, since that 
      //would put it in the 
negatives (an invalid value). 
      //For purposes of this 
simulation, we're classifying in a sequential fashion. 
      wait(classification_delay);  
//here's the waiting time to classify. 
      int tk = uniform(0,num_wps);  
//here we decide which weapon platform should get it. 
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      target_list[i] = tk; 
      ev << "Target " << i << " 
assigned to WP " << target_list[i] << '\n'; 
      cMessage *fire_order = new 
cMessage( name()); 
      //here's the weapon platform 
that was assigned to the target 
      fire_order->addPar("BMC2_wp") 
= target_list[i]; 
      //here's the target the 
weapon platform is assigned to 
      fire_order->addPar("target") 
= i; //tracks & targets are counted 0 to n-1. 
      cMessage *copy = (cMessage *) 
fire_order->dup(); 
      send(copy, "out");  //we're 
sending a copy to the Target List 
      send(fire_order, "WPout", 
target_list[i]); //simultaneously we send the fire order to 
the WP. 

     } 
     else 
     { 
      ev << "Target " << i << " 
already assigned to WP " << target_list[i] << '\n'; 
     } 
    } 
   } 

   else 
   { 
    ev << "ERROR: BMC2 received a target 
list message with no list attached!!!" << '\n'; 
   } 
 
 } 
} 

//---------------------------------------------------------
---- 
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// file: CA.cpp 
// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 3 Dec 2003 

// This simulates the abstract concept that others can pass 
// cues to the SensorNet (not just sensors and peerSNs). 
//---------------------------------------------------------
---- 
 
#include "omnetpp.h" 
 
class CA : public cSimpleModule 

{ 
    Module_Class_Members(CA,cSimpleModule,16384) 
    virtual void activity(); 
}; 
 
Define_Module( CA ); 
 
void CA::activity() 

{ 
  int own_addr = gate( "out" )->toGate()->index(); 
  int track_size = parentModule()->par("IRTrackSize"); 
  int num_tracks = parentModule()->par("num_Tracks"); 
 
    for(int i=0;i<num_tracks;i++) 
    { 
  // connection setup 

        ev << "Client " << name() << " " << own_addr << " 
sending Cue of size " << track_size << " bits\n"; 
        cMessage *work = new cMessage( name()); 
  work->setLength(track_size); 
  work->addPar("src") = own_addr; 
  work->addPar("track") = i; 
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  work->setTimestamp(); //puts a current time 
timestamp on it. 
  send( work, "out" ); 
 

 ev << "In CA Module at point 1" << '\n'; 
 //*************************************** 
 
    } 
} 
//---------------------------------------------------------
---- 
// file: CC.cpp 

// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 29 Nov 2003 
// The Cueing Capsule within a SensorNet 
//---------------------------------------------------------
---- 
 
#include "omnetpp.h" 

 
class CC : public cSimpleModule 
{ 
    Module_Class_Members(CC,cSimpleModule,16384) 
    virtual void activity(); 
}; 
 
Define_Module( CC ); 

 
void CC::activity() 
{ 
 double avg_utilization = 0.0; 
 double process_time = parentModule()-
>par("Process_Time"); 
 cOutVector resp_v("CFC utilization"); 
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 double num_tracks = parentModule()->par("num_Tracks"); 
 double num_radarsensors = (parentModule()-
>par("num_RadarSensors")); 
 double num_irsensors = (parentModule()-
>par("num_IRSensors")); 
 double num_sensors = num_radarsensors+num_irsensors; 
 double num_cas = parentModule()->par("num_CAs"); 
 double num_psns = parentModule()->par("num_PSNs"); 
 double cue_variable = 
(num_tracks/((num_sensors+num_cas+num_psns)*num_tracks)); 
//watch out for divide by 0 errors 
 int num_scas = parentModule()->par("num_SCAs"); 

 
 ev << "In CC Module at point 1" << '\n'; 
 //*************************************** 
 
 //The cued array will be used to see if we keep or 
drop a cue.  Note, only cues relevant to our tracks 
 //are being received.  No irrelevant cues are being 
sent by peer SensorNets. 

 bool cued[100]; 
 for (int t=0; t<100;t++) 
 { 
  cued[t] = false; 
 } 
 
    for(;;) 
    { 

  cMessage *msg = receive(); 
  // Make sure you put in some delay for handling 
of the message 
  wait(process_time); 
  avg_utilization = avg_utilization + process_time; 
  resp_v.record(avg_utilization/simTime()); 
 
  int track = msg->par("track"); 
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  int source = msg->par("src"); 
 
  if (msg->arrivedOn("Cuein")) 
  { 

 
   if(cued[track] == false) 
   { 
    ev << "CC: Cue received for track " << 
track << " from " << source << '\n'; 
    ev << "Reminder: sources are numbered 0 
to num_RadarSensors + num_IRSensors+ num_CAs + num_PSNs"  
     << '\n'; 

 
    double random_num = uniform(.01,1); 
//we're going to drop all but fusion variable % of Cues. 
  
    //let's see what the variables 
are!************** 
    ev << "CueingCapsule, seeing if the cue 
is redundant" <<'\n'; 

    ev << "Here's the Random Number --> " 
<< random_num <<'\n'; 
    ev << "Here's the Cue Variable --> " << 
cue_variable << '\n'; 
    //If the Random Number is larger, it's 
forwarded to the TCC 
    //Elsewise, it's considered a definate 
valid cue and handled as such 

 
    if (random_num > cue_variable) //need 
to forward the track to the TCC for a decision 
    { 
     ev << "Forwarding the cue to the 
TCC for a decision" << '\n'; 
     send(msg, "TCCout"); 
    } 

    else 
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    { 
     ev << "TRACK ALERT:  Valid cue 
received on Track " << track << '\n'; 
     cued[track] = true; 

     for(int s=0; s<num_scas-1; s++) 
     { 
      cMessage *copy = (cMessage *) 
msg->dup(); 
      send(copy, "SCAout", s); 
     } 
     send(msg, "SCAout", num_scas-1); 
    } 

   } 
   else 
   { 
    ev << "CC: Redundant Cue for Target " 
<< track << " dropped" << '\n'; 
    delete msg; 
   } 
  } 

  else if (msg->arrivedOn("TCCin")) 
  { 
   //if it comes back from the TCC, then it is 
a valid cue.  Elsewise it would have been dropped. 
   ev << "TRACK ALERT:  Valid cue received for 
Track " << track << '\n'; 
   cued[track] = true; 
   for(int s=0; s<num_scas-1; s++) 

   { 
    cMessage *copy = (cMessage *) msg-
>dup(); 
    send(copy, "SCAout", s); 
   } 
   send(msg, "SCAout", num_scas-1); 
  } 
 } 
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} 
//---------------------------------------------------------
---- 
// file: IRSensor.cpp 

// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 22 Nov 2003 
// This is a generic IR sensor. 
//---------------------------------------------------------
---- 
 
#include "omnetpp.h" 

 
class IRSensor : public cSimpleModule 
{ 
    Module_Class_Members(IRSensor,cSimpleModule,16384) 
    virtual void activity(); 
}; 
 
Define_Module( IRSensor ); 

 
void IRSensor::activity() 
{ 
  int own_addr = gate( "out" )->toGate()->index(); 
  int track_size = parentModule()->par("IRTrackSize"); 
  int num_tracks = parentModule()->par("num_Tracks"); 
 
    for(int i=0;i<num_tracks;i++) 

    { 
  // connection setup 
        ev << "Client " << name() << " " << own_addr << " 
sending IR Cue of size " << track_size << " bits\n"; 
        cMessage *work = new cMessage( name()); 
  work->setLength(track_size); 
  work->addPar("src") = own_addr; 
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  work->addPar("track") = i; 
  work->setTimestamp(); //puts a current time 
timestamp on it. 
  send( work, "out" ); 

    } 
} 
 
//---------------------------------------------------------
---- 
// file: PHIC.cpp 
// author: Joel D. Babbitt 
// Thesis Work @ NPS 

// Date: 3 Dec 2003 
// The Peer/Higher Interface Capsule within the SensorNet 
//---------------------------------------------------------
---- 
 
#include "omnetpp.h" 
 
class PHIC : public cSimpleModule 

{ 
    Module_Class_Members(PHIC,cSimpleModule,16384) 
    virtual void activity(); 
}; 
 
Define_Module( PHIC ); 
 
void PHIC::activity() 

{ 
 double avg_utilization = 0.0; 
 double process_time = parentModule()-
>par("Process_Time"); 
 int num_psns = parentModule()->par("num_PSNs"); 
 cOutVector resp_v("PHIC utilization"); 
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 ev << "In PHIC Module at point 1" << '\n'; 
 //*************************************** 
 
    for(;;) 

    { 
//  if (simTime()==0) 
///  { 
//   ev << "PHIC at the beginning of simulation" 
<< '\n'; 
//   cMessage *work = new cMessage( name()); 
//   send(work, "BMC2out"); 
//  } 

   
   
 ev << "In PHIC Module before receive()" << '\n'; 
 //*************************************** 
 
        cMessage *msg = receive(); 
 
 ev << "In PHIC Module after receive()" << '\n'; 

 //*************************************** 
 
   
  // Make sure you put in some delay for handling 
of the message 
  wait(process_time); 
  avg_utilization = avg_utilization + process_time; 
  resp_v.record(avg_utilization/simTime()); 

 
  if (msg->arrivedOn("MasterListin")) 
  { 
   ev << "PHIC sending Master Track List to 
BMC2" << '\n'; 
   send(msg, "BMC2out"); 
  } 



235 

  else if (msg->arrivedOn("AbstractListin")) 
  { 
   ev << "PHIC sending Abstracted Track List to 
PSNs" << '\n'; 

   for(int s=0; s<num_psns-1; s++) 
   { 
    cMessage *copy = (cMessage *) msg-
>dup(); 
    send(copy, "PSNout", s); 
   } 
   delete msg; 
//   send(msg, "PSNout", num_psns); 

  } 
  else if (msg->arrivedOn("PSNin")) 
  { 
   //Pass abstracted track lists to the TCC for 
inclusion into the master track list. 
   //These are not passed for cueing 
purposes!!! 
   ev << "PHIC sending Abstracted Track List to 
TCC" << '\n'; 
   send(msg, "TCCPSNout"); 
  } 
  else if (msg->arrivedOn("BMC2in")) 
  { 
   ev << "PHIC sending Master Track List to 
TCC" << '\n'; 
   send(msg, "TCCBMC2out"); 

  } 
  else 
  { 
   ev << "PHIC inactive" << '\n'; 
  } 
 } 
} 
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//---------------------------------------------------------
---- 
// file: RadarSensor.cpp 
// author: Joel D. Babbitt 

// Thesis Work @ NPS 
// Date: 22 Nov 2003 
// This is a generic radar sensor. 
//---------------------------------------------------------
---- 
 
#include "omnetpp.h" 
 

class RadarSensor : public cSimpleModule 
{ 
    Module_Class_Members(RadarSensor,cSimpleModule,16384) 
    virtual void activity(); 
}; 
 
Define_Module( RadarSensor ); 
 

void RadarSensor::activity() 
{ 
  int own_addr = gate( "out" )->toGate()->index(); 
  int track_size = parentModule()->par("RadarTrackSize"); 
  int num_tracks = parentModule()->par("num_Tracks"); 
 
    for(int i=0;i<num_tracks;i++) 
    { 

  // connection setup 
        ev << "Client " << name() << " " << own_addr << " 
sending Radar Cue of size " << track_size << " bits\n"; 
        cMessage *work = new cMessage( name()); 
  work->setLength(track_size); 
  work->addPar("src") = own_addr; 
  work->addPar("track") = i; 
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  work->setTimestamp(); //puts a current time 
timestamp on it. 
  send( work, "out" ); 
    } 

} 
 
//---------------------------------------------------------
---- 
// file: RemoteSN.cpp 
// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 3 Dec 2003 

// A peer SensorNet to our SensorNet. 
//---------------------------------------------------------
---- 
 
#include "omnetpp.h" 
 
class RemoteSN : public cSimpleModule 
{ 

    Module_Class_Members(RemoteSN,cSimpleModule,16384) 
    virtual void activity(); 
}; 
 
Define_Module( RemoteSN ); 
 
void RemoteSN::activity() 
{ 

 ev << "In RemoteSN Module at point 1" << '\n'; 
 //*************************************** 
 
 int own_addr = gate( "out" )->toGate()->index(); 
 int track_size = parentModule()->par("IRTrackSize"); 
 int num_tracks = parentModule()->par("num_Tracks"); 
 double avg_utilization = 0.0; 
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 double process_time = parentModule()-
>par("Process_Time"); 
 double classification_delay = parentModule()-
>par("ClassDelay"); 

 cOutVector resp_v("BMC2 utilization"); 
 
 
    for(int i=0;i<num_tracks;i++) 
    { 
  double random_num = uniform(.01,1); //we're only 
going to generate 50% of Cues. 
  if (random_num > .5) //The cue we were going to 
send to our peer sensor net does not   
        //apply to them, so we need to 
wait until we have one that does apply. 
  { 
   ev << "##TCC Dropping the Cue!##" << '\n'; 
  } 
  else  //validate the cue as being relevant to our 
SensorNet 

  {  
   // connection setup 
      ev << "Client " << name() << " " << own_addr  
    << " sending Peer SensorNet Cue of size 
" << track_size << " bits\n"; 
   cMessage *work = new cMessage( name()); 
   work->setLength(track_size); 
   work->addPar("src") = own_addr; 

   work->addPar("track") = i; 
   work->setTimestamp(); //puts a current 
time timestamp on it. 
   send( work, "Cueout" ); 
  } 
 } 
 
 for(;;) 
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 { 
        cMessage *msg = receive(); 
  // Make sure you put in some delay for handling 
of the message 

  wait(process_time); 
  avg_utilization = avg_utilization + process_time; 
  resp_v.record(avg_utilization/simTime()); 
 
  //send the track list out that we just received, 
as though it was ours. 
  send(msg, "out"); 
    } 

} 
 
//---------------------------------------------------------
---- 
// file: SCA.cpp 
// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 3 Dec 2003 

// This is a generic Sensor Controlling Authority. 
//---------------------------------------------------------
---- 
 
#include "omnetpp.h" 
 
class SCA : public cSimpleModule 
{ 

    Module_Class_Members(SCA,cSimpleModule,16384) 
    virtual void activity(); 
}; 
 
Define_Module( SCA ); 
 
void SCA::activity() 
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{ 
  double process_time = parentModule()-
>par("Process_Time"); 
 

    for(;;) 
    { 
  // receive msg (implicit queueing!) 
        cMessage *msg = receive(); 
  // Make sure you put in some delay for handling 
of the message 
  wait(process_time); 
 

  //here we'll measure how long it took to get the 
cueing message here. 
 
 //****************************************************
****** 
 
    } 
} 

 
//---------------------------------------------------------
---- 
// file: SFP.cpp 
// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 25 Nov 2003 
// A generic Sensor Fusion Processor. 

//---------------------------------------------------------
---- 
 
#include "omnetpp.h" 
 
class SFP : public cSimpleModule 
{ 
    Module_Class_Members(SFP,cSimpleModule,16384) 
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    virtual void activity(); 
}; 
 
Define_Module( SFP ); 

 
void SFP::activity() 
{ 
  int own_addr = gate( "SNout" )->toGate()->index(); 
  int track_size = 0; 
  int num_radar_sensors = parentModule()-
>par("num_RadarSensors"); 
  int radar_track_size = parentModule()-
>par("RadarTrackSize"); 
  int ir_track_size = parentModule()->par("IRTrackSize"); 
  int num_tracks = parentModule()->par("num_Tracks"); 
  double delay = parentModule()->par("TrackDelay"); 
  double time_marker = 0.00000; 
  int num_fr = parentModule()->par("num_FusionRequests"); 
  int fusion_marker = 0; 
//  double avg_utilization = 0.0; 

  double process_time = parentModule()-
>par("Process_Time"); 
//  cOutVector resp_v("SFP Utilization"); 
    long pointer; 
 cArray *pntr; 
// cArray tracks; 
 
  int track_list[100]; 

 
//  for (int t=0; t<100;t++) 
//  { 
//   track_list[t] = -1; 
//  } 
 
    for(;;) 
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    { 
 
 //here's the message for each target that needs to be 
sent to the SensorNet 

 
 ev << "SFP simTime() = " << simTime() << '\n'; 
 ev << "SFP time_marker = " << time_marker <<'\n'; 
 
  if(simTime()>=time_marker) 
  { 
   time_marker = simTime()+delay; 
   fusion_marker = 0; 

 
 ev << "SFP simTime() = " << simTime() << '\n'; 
 ev << "SFP time_marker = " << time_marker <<'\n'; 
 
   for(int i=0;i<num_tracks;i++) 
   { 
 
    ev << "In SFP Module inside Track 
Sending Loop" << '\n'; 
 
    if (true)//((track_list[i] == own_addr) 
|| (track_list[i] == -1)) 
    { 
     ev << "SFP Checking to see if it 
should send out any tracks" << endl; 
     if(i<=(num_radar_sensors-1)) 

     { 
      track_size = 
radar_track_size; 
     } 
     else 
     { 
      track_size = ir_track_size; 
     } 
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//      ev << "num_radar_sensors-1 = 
" << num_radar_sensors-1 << '\n'; 
//      ev << "i = " << i << '\n'; 
//      ev << "if i is smaller, then 
tracksize should be equal to radar_track_size" << '\n'; 
//      ev << "track_size = " << 
track_size << '\n'; 
 
     ev << name() << " " << own_addr << 
" sending track of size " << track_size  
      << " bits\n"; 
     cMessage *work = new cMessage( 
name()); 
     work->addPar("src") = own_addr; 
     work->addPar("track") = i; 
//tracks & targets are counted 0 to n-1. 
     work->setLength(track_size); 
     work->setTimestamp(); //puts a 
current time timestamp on it. 
     send(work, "SNout"); 

    } 
    else if(fusion_marker<num_fr) 
    { 
     ev << name() << " " << own_addr << 
" sending ColFus Request of size "  
      << track_size << " bits\n"; 
     cMessage *request = new cMessage( 
name()); 

     request->addPar("src") = own_addr; 
     request->addPar("track") = i; 
//tracks & targets are counted 0 to n-1. 
     request->addPar("fwd") = true; 
     request->setLength(50); //EMBEDDED 
PARAMETER ***ColFus Request Size*** 
     request->setTimestamp(); 
     send(request, "SNRequestout"); 

    } 
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    fusion_marker++; 
   } 
  } 
  else 

  { 
   wait(.001); 
   ev << "SFP on standby" << endl; 
  } 
 
  //here's the message receiving/handling area. 
  // receive msg (implicit queueing!) 
  simtime_t timeout = delay; 

        cMessage *msg = receive(timeout); 
  ev << "SFP waiting to receive message" << endl; 
  // Make sure you put in some delay for handling 
of the message 
  wait(process_time); 
 
  if (msg != NULL) 
  { 

   if (msg->arrivedOn("SNRequestin")) 
   { 
    delete msg; 
   } 
   else if (msg->arrivedOn("TrackListin")) 
   { 
    pointer = msg->par("mtlp"); 
    ev << " Pointer in SFP Process is " << 
pointer << endl; 
    pntr = (cArray *) pointer; 
    cArray tracks = *pntr; 
    for (int i=0; i < tracks.items(); i++) 
    { 
     track_list[i] = (int) tracks[i]; 
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     ev << "Track List Entry " << i << 
" was assigned " << track_list[i] << endl; 
     //This gives us the track_list 
array for use above. 

    } 
   } 
  } 
 
 } 
} 
 
//---------------------------------------------------------
---- 
// file: SFPIC.cpp 
// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 1 Dec 2003 
// A SFP Interface Capsule within the SensorNet. 
//---------------------------------------------------------
---- 

 
#include "omnetpp.h" 
 
class SFPIC : public cSimpleModule 
{ 
    Module_Class_Members(SFPIC,cSimpleModule,16384) 
    virtual void activity(); 
}; 

 
Define_Module( SFPIC ); 
 
void SFPIC::activity() 
{ 
  double avg_utilization = 0.0; 
  double process_time = parentModule()-
>par("Process_Time"); 
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  cOutVector resp_v("SFPIC Utilization"); 
  int num_sfps = parentModule()->par("num_SFPs"); 
  int fused_track_size = parentModule()-
>par("FusedTrackSize"); 

 
 ev << "In SFPIC Module at point 1" << '\n'; 
 //*************************************** 
 
  int local_target_list[100]; 
  for (int t=0; t<100;t++) 
  { 
   local_target_list[t] = -1; 

  } 
  int request_registry[100]; 
  for (int r=0; r<100;r++) 
  { 
   request_registry[r] = -1; 
  } 
 
//  pntr = &trackids; 

//  pointer = (long) pntr; 
 
    for(;;) 
    { 
 
  //Up here we need to send tracks to the Weapons 
Platforms!! 
 
 //****************************************************
***** 
 
 
 
 
  // receive msg (implicit queueing!) 
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        cMessage *msg = receive(); 
  // Make sure you put in some delay for handling 
of the message 
  wait(process_time); 

  avg_utilization = avg_utilization + process_time; 
  resp_v.record(avg_utilization/simTime()); 
 
  if (msg->arrivedOn("TrackListin")) 
  { 
   if (msg->hasPar("mtlp")) 
   { 
    for(int s=0; s<num_sfps-1; s++) 

    { 
     cMessage *copy = (cMessage *) msg-
>dup(); 
     send(copy, "TrackListout", s); 
     ev << "SFPIC sending Master Track 
List to SFP " << s << '\n'; 
    } 
    delete msg; 

   } 
   if (msg->hasPar("tlp")) 
   { 
    //read the target list into the local 
target list. 
   } 
 
 

 
 
  } 
  else if (msg->arrivedOn("Shortin")) 
  { 
   //there's a bit more delay in doing this 
operation than normal 
   wait(process_time); 
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   avg_utilization = avg_utilization + 
process_time; 
   resp_v.record(avg_utilization/simTime()); 
 

   int target = msg->par("target");  //this is 
the target the shorting order is for. 
   if(local_target_list[target] != -1) 
   { 
    bool active = msg->par("active"); 
//this allows a weapon platform to activate/inactivate a 
short order. 
    if(active) 

    { 
     ev << "SFPIC Marking Target " << 
target << " for Shorting!" << '\n'; 
     request_registry[target] = true; 
    } 
    else  //elsewise it must have already 
fired on the target. 
    { 

     ev << "SFPIC Deactivating Target " 
<< target << '\n'; 
    } 
   } 
   else 
   { 
    ev << "SFPIC Cannot Short Target " << 
target << "!!!" <<'\n'; 

   } 
  } 
  else if (msg->arrivedOn("SFPin")) 
  { 
   int source = msg->par("src"); 
   int track = msg->par("track"); 
   if (request_registry[track] && 
(local_target_list[track] == source))  
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    //request registry having value of true 
for a track means it is active. 
   { 
    cMessage *copy = (cMessage *) msg-
>dup(); 
    send(copy, "WPout"); 
    send(msg, "TCCout"); 
   } 
   else //there's no active request for it at 
this point 
   { 
    send(msg, "TCCout"); 

   } 
  } 
  else if (msg->arrivedOn("SFPRequestin")) 
  { 
   //if I'm smart enough I might be able to 
figure out how to model the whole forum thing**** 
  
 //****************************************************
************************************* 
 
   ev << "SFPIC got a ColFus Request" << endl; 
   //who did it come from? 
   int id = msg->par("src"); 
 
   msg->setLength(fused_track_size); //set the 
length of the fused track 

   send(msg, "SFPRequestout", id); //send the 
fused track back to the requesting SFP 
  } 
 } 
} 
 
//---------------------------------------------------------
---- 

// file: TCC.cpp 
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// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 1 Dec 2003 
// The Track Correlation Capsule within the SensorNet 

//---------------------------------------------------------
---- 
 
#include "omnetpp.h" 
 
class TCC : public cSimpleModule 
{ 
    Module_Class_Members(TCC,cSimpleModule,16384) 

    virtual void activity(); 
}; 
 
Define_Module( TCC ); 
 
void TCC::activity() 
{ 
 double avg_utilization = 0.0; 

 double process_time = parentModule()-
>par("Process_Time"); 
 double fusion_time = parentModule()->par("Fusion"); 
 double list_time = parentModule()->par("ListCheck"); 
    int fused_track_size = parentModule()-
>par("FusedTrackSize"); 
 cOutVector resp_v("TCC utilization"); 
 double num_tracks = parentModule()->par("num_Tracks"); 

 double num_targets = parentModule()-
>par("num_Targets"); 
 int num_radarsensors = parentModule()-
>par("num_RadarSensors"); 
 int num_irsensors = parentModule()-
>par("num_IRSensors"); 
 double num_sensors = num_radarsensors+num_irsensors; 
 int num_sfps = parentModule()->par("num_SFPs"); 
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 double cue_variable = 0.000; 
 double random_num; 
 int dropped_tracks = 0; 
 int dropped_cues = 0; 

 int forwarded_tracks = 0; 
 int forwarded_cues = 0; 
 int total_tracks = 0; //total tracks received 
 int total_cues = 0; 
 
 ev << "In TCC Module at point 1" << '\n'; 
 //*************************************** 
 

 
 int track_list[100]; 
 for (int t=0; t<100;t++) 
 { 
  track_list[t] = -1; 
 } 
 for (t=0; t<num_tracks; t++) 
 { 

  //in an effort to simplify the simulation, here 
we'll designate the winning SFPs up front 
  track_list[t] = uniform(0,num_sfps); 
  ev << "The SFP for Track " << t << " is SFP " << 
track_list[t] << '\n'; 
 } 
 
    for(;;) 

    { 
  cMessage *msg = receive(); 
  // Make sure you put in some delay for handling 
of the message 
  wait(process_time); 
  avg_utilization = avg_utilization + process_time; 
  resp_v.record(avg_utilization/simTime()); 
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  cue_variable = (1/num_sensors); //watch out for 
divide by 0 errors 
  

  if(total_cues<num_tracks) //this lets the first 
track through for each actual object out there. 
  { 
   cue_variable = 1.000; 
  } 
 
  if (msg->arrivedOn("Cuein")) 
  { 

   random_num = uniform(.01,1); //we're going 
to drop all but fusion variable % of Cues. 
 
   //let's see what the variables 
are!************** 
   ev << "TrackCorrelationCapsule, seeing if 
the cue is redundant" <<'\n'; 
   ev << "Here's the Random Number --> " << 
random_num <<'\n'; 
   ev << "Here's the Cue Variable --> " << 
cue_variable << '\n'; 
   //If the Random Number is larger, it's 
correlated (dropped) 
   //Elsewise, it's considered a valid cue and 
returned as such 
 

   if (random_num > cue_variable) //need to 
drop the message and wait for the next one. 
   { 
    ev << "##TCC Dropping the Cue!##" << 
'\n'; 
    delete msg; 
//    dropped_cues++; 
   } 

   else  //validate the cue 
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   {  
 
    ev << "##TCC Validated the Cue!##" << 
'\n'; 

 
    //Note, the actual cue correlation 
request is passed to an internal capsule, clearing the 
    //TCC to handle other incoming cues.  
This is modeled by subtracting fusion_time 
    //from the fused message's timestamp.  
This shows the time delay in the end. 
    simtime_t temp = msg->timestamp(); 

    if (temp>list_time) 
    { 
     temp = temp - list_time; 
    } 
    msg->setTimestamp(temp); 
 
    ev << "TCC.Cueout --> CC.in" << '\n'; 
    // return the track to the Cue Capsule; 

          send(msg, "Cueout"); 
//    forwarded_cues++; 
   } 
  } 
  else if (msg->arrivedOn("SFPICin")) 
  { 
//   total_tracks++; 
   //Instead of the fusion variable, we pre-
designate winners above and drop all others. 
 
   ev << "@@TCC About to Process Message!@@" 
<<'\n'; 
   int source = msg->par("src"); 
   ev << "Here's the SFP the Track came from --
> " << source <<'\n'; 
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   int track = msg->par("track"); 
   ev << "Here's the Track it pertains to --> " 
<< track <<'\n'; 
 

   if (track_list[track] == source) 
   { 
    ev << "@@TCC Fusing the message!@@" << 
'\n'; 
 
    //Note, the actual fusion request is 
passed to an internal capsule, clearing the 
    //TCC to handle other incoming tracks.  
This is modeled by subtracting fusion_time 
    //from the fused message's timestamp.  
This shows the time delay in the end. 
    simtime_t temp = msg->timestamp(); 
    if (temp>fusion_time) 
    { 
     temp = temp - fusion_time; 
    } 

    msg->setTimestamp(temp);     
 
    // change the size to a fused track 
size 
    msg->setLength(fused_track_size); 
 
    ev << "TCC --> TRC" << '\n'; 
    // forward the track for writing to the 
Track Registry's master track list 
 
    send(msg, "TRCout"); 
//    forwarded_tracks++; 
   } 
   else //drop the message 
   { 
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    ev << "@@TCC Dropping the message!@@" 
<< '\n'; 
    delete msg; 
//    dropped_tracks++; 

   } 
  } 
  else if (msg->arrivedOn("TRCin")) 
  { 
   ev << "TrackCorrelationCapsule processing 
msg from TRCin" << '\n'; 
   //note, this causes minimal delay, as the 
List Maintenance Capsule is essentially a 

   //Sensor Fusion Processor, complete with a 
Track List Capsule that has an active and 
   //semi-active Track Registry.  The new list 
goes to the inactive Track Registry 
   //then, after the inactive comes on line, it 
is given to the formerly active TR. 
 
   //This is an estimated service delay to 
switch between the active and semi-active TRs. 
   wait(process_time); 
   avg_utilization = avg_utilization + 
process_time; 
   resp_v.record(avg_utilization/simTime()); 
 
   delete msg; 
  } 

  else if (msg->arrivedOn("PHICPSNin")) 
  { 
   //**Here we process the Abstracted master 
track list and send out cues. 
  } 
  else if (msg->arrivedOn("PHICBMC2in")) 
  {   
   //We route the target assignment messages 
directly to the TRC 
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   send(msg, "TRCout"); 
  } 
  else 
  { 

   ev << "***ERROR: TCC did not handle 
message!***"; 
  } 
 } 
} 
 
//---------------------------------------------------------
---- 

// file: TRC.cpp 
// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 29 Nov 2003 
// The Track Registry Capsule keeps track of the master 
track list 
// for the SensorNet.  
//---------------------------------------------------------
---- 
 
#include "omnetpp.h" 
 
class TRC : public cSimpleModule 
{ 
    Module_Class_Members(TRC,cSimpleModule,16384) 
    virtual void activity(); 

}; 
 
Define_Module( TRC ); 
 
void TRC::activity() 
{ 
  double delay = parentModule()->par("TrackListDelay"); 
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  double time_marker = 0.00000; 
  int num_tracks = parentModule()->par("num_Tracks"); 
  int fused_track_size = parentModule()-
>par("FusedTrackSize"); 

  double avg_utilization = 0.0; 
  double process_time = parentModule()-
>par("Process_Time"); 
  cOutVector resp_v("TRC Utilization"); 
 
 ev << "In TRC Module at point 1" << '\n'; 
 //*************************************** 
 

  int track_list[20][100]; 
  for (int a=0; a<20;a++) 
  { 
   for (int b=0; b<100;b++) 
   { 
    track_list[a][b] = -1; 
   } 
  } 

 
  int target_list[20][100]; 
  for (int c=0; c<20;c++) 
  { 
   for (int d=0; d<100;d++) 
   { 
    target_list[c][d] = -1; 
   } 

  } 
 
  int x = 0;  //This is the counter that keeps the track 
and target lists synchronized. 
 
  int *pntrA; 
  int *pntrB; 
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  long master_track_list_ptr; 
  long target_list_ptr; 
 
    for(;;) 

    { 
 
//here's the Master Track List and Target List messages 
going out 
  if(simTime()>time_marker) 
  { 
   cMessage *trackmsg = new cMessage( name()); 
   cMessage *targetmsg = new cMessage( name()); 

 
//   pntrA = &track_list[a][0]; 
//   master_track_list_ptr = (long) pntrA; 
//   trackmsg->addPar( "mtlp" ); 
//   trackmsg->par("mtlp") = 
master_track_list_ptr; 
 
   //make the pointer to the current Master 
Track List 
   char * master_track_list_ptr; 
   master_track_list_ptr = (char *) 
track_list[a]; 
   trackmsg->addPar( "mtlp" ); 
   trackmsg->par("mtlp") = 
master_track_list_ptr; 
 

   //make the pointer to the current Target 
List 
   char * target_list_ptr; 
   target_list_ptr = (char *) target_list[a]; 
   targetmsg->addPar( "tlp" ); 
   targetmsg->par("tlp") = target_list_ptr; 
 
   //send out the Master Track List 
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   cMessage *copy = (cMessage *) trackmsg-
>dup(); 
   send(copy, "TSCout"); 
   ev << "Sending Master Track List to TSC with 
Track List " << x << '\n'; 
   send(trackmsg, "TCCout"); 
   ev << "Sending Master Track List to TCC with 
Track List " << x << '\n'; 
 
   //send out the Target List 
   send(targetmsg, "TSCout"); 
   ev << "Sending Target List to TSC" << '\n'; 

 
   time_marker = simTime()+delay; 
 
   if(x>19) 
   { 
    ev << "TRC switching to Track and 
Target Lists " << x << endl; 
    x = 0; 

    //Here's where we copy, then move to 
the next Master Track List 
    for (int m=0; m<100; m++) 
    { 
     track_list[x][m] = 
track_list[20][m]; 
    } 
    //Here's where we copy, then move to 
the next Target List 
    for (int n=0; n<100; n++) 
    { 
     track_list[x][n] = 
track_list[20][n]; 
    } 
   } 
   else 
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   { 
    x++; 
    ev << "TRC switching to Track and 
Target Lists " << x << endl; 

    //Here's where we copy, then move to 
the next Master Track List 
    for (int m=0; m<100; m++) 
    { 
     track_list[x][m] = track_list[x-
1][m]; 
    } 
    //Here's where we copy, then move to 
the next Target List 
    for (int n=0; n<100; n++) 
    { 
     track_list[x][n] = track_list[x-
1][n]; 
    } 
   } 
  } 

 
//here's the message receiving/handling area. 
  // receive msg (implicit queueing!) 
  simtime_t timeout = .01; 
        cMessage *msg = receive(timeout); 
  // Make sure you put in some delay for handling 
of the message 
  wait(process_time); 

  avg_utilization = avg_utilization + process_time; 
  resp_v.record(avg_utilization/simTime()); 
 
  if (msg != NULL) 
  { 
   if (msg->arrivedOn("TCCin")) 
   { 
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    //here's where we need to do the magic 
of making the Master Track List and Target List 
    if(msg->hasPar("BMC2_wp"))  //this 
tells us if it's a target assignment message 

    { 
     ev << "Target Message Received!" 
<< '\n'; 
     int tg = msg->par("target"); 
     int wp = msg->par("BMC2_wp"); 
     target_list[x][tg] = wp; 
    } 
    if(msg->hasPar("track")) 

    { 
     ev << "Track Message Received!" << 
'\n'; 
     int source = msg->par("src"); 
     int trk = msg->par("track"); 
     track_list[x][trk] = source; 
    } 
    ev << "Track/Target Message Deleted!" 
<< '\n'; 
    delete msg; 
   } 
   else 
   { 
    ev << "ERROR in the TRC Capsule!!!" << 
'\n'; 
   } 

  } 
 } 
} 
 
//---------------------------------------------------------
---- 
// file: TSC.cpp 
// author: Joel D. Babbitt 
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// Thesis Work @ NPS 
// Date: 29 Nov 2003 
// The Track Server Capsule serves the master track list to 
all  

//---------------------------------------------------------
---- 
 
#include "omnetpp.h" 
 
class TSC : public cSimpleModule 
{ 
    Module_Class_Members(TSC,cSimpleModule,16384) 

    virtual void activity(); 
}; 
 
Define_Module( TSC ); 
 
void TSC::activity() 
{ 
    double avg_utilization = 0.0; 

 double process_time = parentModule()-
>par("Process_Time"); 
 cOutVector resp_v("TSC Utilization"); 
 int num_tracks = parentModule()->par("num_Tracks"); 
 int fused_track_size = parentModule()-
>par("FusedTrackSize"); 
 
 ev << "In TSC Module at point 1" << '\n'; 

 //*************************************** 
 
 
 for(;;) 
    { 
  cMessage *msg = receive(); 
  // Make sure you put in some delay for handling 
of the message 
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  wait(process_time); 
  avg_utilization = avg_utilization + process_time; 
  resp_v.record(avg_utilization/simTime()); 
 

  if (msg->arrivedOn("WPICin")) 
  { 
   //For purposes of this simulation, the 
actual shorting is being handled in the SFPIC 
   //The reason for this is because the data 
structures needed to model it here are beyond 
   //my meager programming skills 
   send(msg, "Shortout"); 

  } 
  else if (msg->arrivedOn("TRCin")) 
  { 
   if (msg->hasPar("mtlp")) 
   { 
    //Here we distribute the Master Track 
List to the SFPIC, the BMC2, 
    //and an abstracted version to all peer 
sensor nets (simulated as  
    //a smaller message size). 
    cMessage *copy = (cMessage *) msg-
>dup(); 
    cMessage *abstract = (cMessage *) msg-
>dup(); 
    copy-
>setLength(num_tracks*fused_track_size); 

    send(copy, "TrackListout"); 
    ev << "TSC Forwarding the Master Track 
List to the SFPIC" << '\n'; 
    abstract-
>setLength(num_tracks*fused_track_size*.5); 
    send(abstract, "PSNout"); 
    ev << "TSC Forwarding the Master Track 
List to the Peer Sensor Nets" << '\n'; 



264 

    msg-
>setLength(num_tracks*fused_track_size); 
    send(msg, "BMC2out"); 
    ev << "TSC Forwarding the Master Track 
List to the BMC2" << '\n'; 
   } 
   else if (msg->hasPar("tlp")) 
   { 
    //Here we distribute the Target List to 
the BMC2 and SFPIC. 
    //As the MTL and TL are really the same 
list, this has no size. 

    //The size of this message is already 
encapsulated into the 
    //Master Track List. 
    cMessage *copy = (cMessage *) msg-
>dup(); 
    send(copy, "TrackListout"); 
    ev << "TSC Forwarding the Target List 
to the SFPIC for Shorting Orders" << '\n'; 

    send(msg, "BMC2out"); 
    ev << "TSC Forwarding the Target List 
to the BMC2" << '\n'; 
   } 
   else 
   { 
    ev << "ERROR in the TSC!!" << endl; 
   } 

  } 
    } 
} 
 
//---------------------------------------------------------
---- 
// file: WP.cpp 
// author: Joel D. Babbitt 

// Thesis Work @ NPS 
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// Date: 3 Dec 2003 
// A Weapon Platform that connects to the SensorNet 
//---------------------------------------------------------
---- 

 
#include "omnetpp.h" 
 
class WP : public cSimpleModule 
{ 
    Module_Class_Members(WP,cSimpleModule,16384) 
    virtual void activity(); 
}; 

 
Define_Module( WP ); 
 
void WP::activity() 
{ 
 
 ev << "In WP Module at point 1" << '\n'; 
 //*************************************** 

 
 double process_time = parentModule()-
>par("Process_Time"); 
// int BMC2_own_addr = gate( "BMC2in" )->toGate()-
>index(); 
// int WPIC_own_addr = gate( "out" )->toGate()->index(); 
 
 ev << "In WP Module at point 2" << '\n'; 

 //*************************************** 
 
    for(;;) 
    { 
  // receive msg (implicit queueing!) 
        cMessage *msg = receive(); 
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  // Make sure you put in some delay for handling 
of the message 
  wait(process_time); 
   

  if (msg->arrivedOn("BMC2in")) 
  { 
/*   int wp = msg->par("BMC2_wp"); 
   if (BMC2_own_addr == wp) 
   { 
    msg->addPar("WPIC_wp") = WPIC_own_addr; 
    send(msg, "out"); //forward it to the 
WPIC. 

   } 
   else 
   { 
    ev << "ERROR: Weapon Platform " << 
BMC2_own_addr << " received WP "  
     << wp << "'s Firing Order!" << 
'\n'; 
   } 

*/  } 
  if (msg->arrivedOn("in")) 
  { 
   //we need to measure here how long it took 
to get a firing solution to the weapon platform 
   //this time measurement would include from 
SFPIC to WP. 
  } 

    } 
} 
//---------------------------------------------------------
---- 
// file: WPIC.cpp 
// author: Joel D. Babbitt 
// Thesis Work @ NPS 
// Date: 2 Dec 2003 
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// The Weapon Platform Interface Capsule within the 
SensorNet. 
//---------------------------------------------------------
---- 

 
#include "omnetpp.h" 
 
class WPIC : public cSimpleModule 
{ 
    Module_Class_Members(WPIC,cSimpleModule,16384) 
    virtual void activity(); 
}; 

 
Define_Module( WPIC ); 
 
void WPIC::activity() 
{ 
 double avg_utilization = 0.0; 
 double process_time = parentModule()-
>par("Process_Time"); 

 cOutVector resp_v("WPIC utilization"); 
 
 
 ev << "In WPIC Module at point 1" << '\n'; 
 //*************************************** 
 
    for(;;) 
    { 

        // receive msg (implicit queueing!) 
        cMessage *msg = receive(); 
  // Make sure you put in some delay for handling 
of the message 
  wait(process_time); 
  avg_utilization = avg_utilization + process_time; 
  resp_v.record(avg_utilization/simTime()); 
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  if (msg->arrivedOn("WPin")) 
  { 
   send(msg, "TrackRequestout"); 

  } 
  else if (msg->arrivedOn("TrackRequestin")) 
  { 
   int dest = msg->par("WPIC_wp"); 
   send(msg, "WPout", dest); 
  } 
    } 
} 
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APPENDIX G. SIMULATION DATA 

 
Constants 
Track Size:  512/1024/1M bits Radar Delay: .5 sec 
Radars:      4  IR Delay:    2 sec  IR Sensors:  2 
Tracked Objects: 50  Capsule Data Rate: 1 Gbps Collaboration Requests: 1 
Master Track List BC: 0.1sec Module Track Handling Time: 0.000005 sec 
Fusing Time: 0.01 sec 
 

Table 1.   Varying Data Rates 
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Table 2.   Varying Track Message Sizes 
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Varying Data Rates and Track Message Size
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Figure 44.   Varying Data Rates and Track Message Sizes 
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Radar Update Rate
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Figure 45.   Ground-based Radar Update Delay 
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Table 3.   Ground-based Radar Update Delay 

 
Table 4.   Space-Based IR Update Delay 
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Space-Based IR Update Rate
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Figure 46.   Space-Based IR Update Delay 
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Varying Radar Sensors
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Figure 47.   Varying Number of Ground-based Radar Sensors 
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Table 5.   Varying Number of Ground-based Radar Sensors 

 
Table 6.   Varying Number of Space-based IR Sensors 
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Varying Space-Based IR Sensors
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Figure 48.   Varying Number of Space-based IR Sensors 
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Collaborative Fusion Requests
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Figure 49.   Collaborative Fusion Requests 
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Table 7.   Collaborative Fusion Requests 

 
Table 8.   Module Processing Time 
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Figure 50.   Module Processing Time 
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Time to Check Track Against Track List
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Figure 51.   Track List Access Time 
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Table 9.   Track List Access Time 

 
Table 10.   Time to Perform Track Fusion 
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Figure 52.   Time to Perform Track Fusion 
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Table 11.   Master Track List Broadcast Times 

 
Table 12.   Capsule Data Rate 
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